27 citations to https://www.mathnet.ru/rus/rm9841
  1. Valerii K. Beloshapka, “On hypergeometric functions of two variables of complexity one”, Журн. СФУ. Сер. Матем. и физ., 17:2 (2024), 175–188  mathnet
  2. S. I. Bezrodnykh, “Generalizations of the Jacobi identity to the case of the Lauricella function FD(N)”, Integral Transforms and Special Functions, 2024, 1  crossref
  3. Z. O. Arzikulov, T. G. Ergashev, “Some Systems of PDE Associated with the Multiple Confluent Hypergeometric Functions and Their Applications”, Lobachevskii J Math, 45:2 (2024), 591  crossref
  4. S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function $\mathrm{F}_D^{(N)}$”, Integral Transforms and Special Functions, 34:11 (2023), 813–834  crossref  mathscinet
  5. A. S. Demidov, “Pseudo-differential operators and Fourier operators”, Equations of Mathematical Physics, Springer, Cham, 2023, 91–192  crossref
  6. W. Chen, L. Tang, L. Tian, X. Yang, “Breather and multiwave solutions to an extended (3+1)-dimensional Jimbo–Miwa-like equation”, Applied Mathematics Letters, 145 (2023), 108785  crossref  mathscinet  zmath
  7. С. Л. Скороходов, “Конформное отображение $\mathbb{Z}$-образной области”, Ж. вычисл. матем. и матем. физ., 63:12 (2023), 2131–2154  mathnet  crossref  mathscinet; S. L. Skorokhodov, “Conformal mapping of a $\mathbb{Z}$-shaped domain”, Comput. Math. Math. Phys., 63:12 (2023), 2451–2473  mathnet  crossref  mathscinet
  8. С. И. Безродных, “Формулы для вычисления интегралов типа Эйлера и их приложение к задаче построения конформного отображения многоугольников”, Ж. вычисл. матем. и матем. физ., 63:11 (2023), 1763–1798  mathnet  crossref  mathscinet; S. I. Bezrodnykh, “Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons”, Comput. Math. Math. Phys., 63:11 (2023), 1955–1988  mathnet  crossref  mathscinet
  9. S. I. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for large in modulo variables near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:4 (2022), 276–291  crossref  mathscinet  isi
  10. I S. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for variables close to unit near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:5 (2022), 419–433  crossref  mathscinet  isi  scopus
1
2
3
Следующая