27 citations to https://www.mathnet.ru/rus/rm9841
-
Valerii K. Beloshapka, “On hypergeometric functions of two variables of complexity one”, Журн. СФУ. Сер. Матем. и физ., 17:2 (2024), 175–188
-
S. I. Bezrodnykh, “Generalizations of the Jacobi identity to the case of the Lauricella function FD(N)”, Integral Transforms and Special Functions, 2024, 1
-
Z. O. Arzikulov, T. G. Ergashev, “Some Systems of PDE Associated with the Multiple Confluent Hypergeometric Functions and Their Applications”, Lobachevskii J Math, 45:2 (2024), 591
-
S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function $\mathrm{F}_D^{(N)}$”, Integral Transforms and Special Functions, 34:11 (2023), 813–834
-
A. S. Demidov, “Pseudo-differential operators and Fourier operators”, Equations of Mathematical Physics, Springer, Cham, 2023, 91–192
-
W. Chen, L. Tang, L. Tian, X. Yang, “Breather and multiwave solutions to an extended (3+1)-dimensional Jimbo–Miwa-like equation”, Applied Mathematics Letters, 145 (2023), 108785
-
С. Л. Скороходов, “Конформное отображение $\mathbb{Z}$-образной области”, Ж. вычисл. матем. и матем. физ., 63:12 (2023), 2131–2154 ; S. L. Skorokhodov, “Conformal mapping of a $\mathbb{Z}$-shaped domain”, Comput. Math. Math. Phys., 63:12 (2023), 2451–2473
-
С. И. Безродных, “Формулы для вычисления интегралов типа Эйлера и их приложение к задаче построения конформного отображения многоугольников”, Ж. вычисл. матем. и матем. физ., 63:11 (2023), 1763–1798 ; S. I. Bezrodnykh, “Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons”, Comput. Math. Math. Phys., 63:11 (2023), 1955–1988
-
S. I. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for large in modulo variables near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:4 (2022), 276–291
-
I S. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for variables close to unit near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:5 (2022), 419–433