12 citations to https://www.mathnet.ru/rus/rm9745
-
René Lozi, Vladimir Belykh, Jim Michael Cushing, Lyudmila Efremova, Saber Elaydi, Laura Gardini, Michał Misiurewicz, Eckehard Schöll, Galina Strelkova, “The paths of nine mathematicians to the realm of dynamical systems”, Journal of Difference Equations and Applications, 30:1 (2024), 1
-
Lyudmila S. Efremova, “$C^1$-Smooth $\Omega$-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: $\Omega$-Stability”, Regul. Chaotic Dyn., 29:3 (2024), 491–514
-
Lyudmila S. Efremova, “Introduction to Completely Geometrically Integrable Maps in High Dimensions”, Mathematics, 11:4 (2023), 926
-
L. S. Efremova, “Simplest skew products on $n$-dimensional ($n\geq 2$) cells, cylinders and tori”, Lobachevskii J. Math., 43:7 (2022), 1598
-
Л. С. Ефремова, Е. Н. Махрова, “Одномерные динамические системы”, УМН, 76:5(461) (2021), 81–146 ; L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881
-
L. S. Efremova, “Geometrically integrable maps in the plane and their periodic orbits”, Lobachevskii J. Math., 42:10, SI (2021), 2315–2324
-
Efremova L.S., “Small Perturbations of Smooth Skew Products and Sharkovsky'S Theorem”, J. Differ. Equ. Appl., 26:8 (2020), 1192–1211
-
E.N. Makhrova, “On Limit Sets of Monotone Maps on Dendroids”, 5, no. 2, 2020, 311
-
L.S. Efremova, “Small C 1-smooth perturbations of skew products and the partial integrability property”, 5, no. 2, 2020, 317
-
L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase flows generated by Cauchy problem for nonlinear Schrödinger equation and dynamical mappings of quantum states”, Lobachevskii J. Math., 40:10 (2019), 1455–1469