12 citations to https://www.mathnet.ru/rus/rm9745
  1. René Lozi, Vladimir Belykh, Jim Michael Cushing, Lyudmila Efremova, Saber Elaydi, Laura Gardini, Michał Misiurewicz, Eckehard Schöll, Galina Strelkova, “The paths of nine mathematicians to the realm of dynamical systems”, Journal of Difference Equations and Applications, 30:1 (2024), 1  crossref  mathscinet
  2. Lyudmila S. Efremova, “$C^1$-Smooth $\Omega$-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: $\Omega$-Stability”, Regul. Chaotic Dyn., 29:3 (2024), 491–514  mathnet  crossref
  3. Lyudmila S. Efremova, “Introduction to Completely Geometrically Integrable Maps in High Dimensions”, Mathematics, 11:4 (2023), 926  crossref
  4. L. S. Efremova, “Simplest skew products on $n$-dimensional ($n\geq 2$) cells, cylinders and tori”, Lobachevskii J. Math., 43:7 (2022), 1598  crossref  mathscinet
  5. Л. С. Ефремова, Е. Н. Махрова, “Одномерные динамические системы”, УМН, 76:5(461) (2021), 81–146  mathnet  crossref  mathscinet  zmath; L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881  crossref  isi
  6. L. S. Efremova, “Geometrically integrable maps in the plane and their periodic orbits”, Lobachevskii J. Math., 42:10, SI (2021), 2315–2324  crossref  mathscinet  isi  scopus
  7. Efremova L.S., “Small Perturbations of Smooth Skew Products and Sharkovsky'S Theorem”, J. Differ. Equ. Appl., 26:8 (2020), 1192–1211  crossref  mathscinet  isi
  8. E.N. Makhrova, “On Limit Sets of Monotone Maps on Dendroids”, 5, no. 2, 2020, 311  crossref  mathscinet
  9. L.S. Efremova, “Small C 1-smooth perturbations of skew products and the partial integrability property”, 5, no. 2, 2020, 317  crossref  mathscinet
  10. L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase flows generated by Cauchy problem for nonlinear Schrödinger equation and dynamical mappings of quantum states”, Lobachevskii J. Math., 40:10 (2019), 1455–1469  crossref  mathscinet  zmath  isi
1
2
Следующая