66 citations to https://www.mathnet.ru/rus/rm9538
-
Chuong N.M., Van Duong D., Duyet N.D., “Two-Weighted Estimates For Multilinear Hausdorff Operators on the Morrey-Herz Spaces”, Adv. Oper. Theory, 5:4 (2020), 1780–1813
-
Kerman R., “Construction of Weights For Positive Integral Operators”, Symmetry-Basel, 12:6 (2020), 1004
-
Gogatishvili A., Neves J.S., Opic B., “Characterization of Embeddings of Sobolev-Type Spaces Into Generalized Holder Spaces Defined By l-P-Modulus of Smoothness”, J. Funct. Anal., 276:2 (2019), 636–657
-
А. А. Калыбай, Р. Ойнаров, “Оценки одного класса квазилинейных интегральных операторов на множестве неотрицательных и неотрицательно-монотонных функций”, Изв. РАН. Сер. матем., 83:2 (2019), 61–82 ; A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272
-
Jain P., Singh A.P., Singh M., Stepanov V.D., “Sawyer'S Duality Principle For Grand Lebesgue Spaces”, Math. Nachr., 292:4 (2019), 841–849
-
Mizuta Y., Nekvinda A., Shimomura T., “Optimal Estimates For the Fractional Hardy Operator on Variable Exponent Lebesgue Spaces”, Math. Inequal. Appl., 22:2 (2019), 445–462
-
Kalybay A., Oinarov R., Temirkhanova A., “Integral Operators With Two Variable Integration Limits on the Cone of Monotone Functions”, J. Math. Inequal., 13:1 (2019), 1–16
-
A. Senouci, N. Azzouz, “Hardy type inequality with sharp constant for $0 < p < 1$”, Eurasian Math. J., 10:1 (2019), 52–58
-
Д. В. Прохоров, В. Д. Степанов, Е. П. Ушакова, “Характеризация функциональных пространств, ассоциированных с весовыми пространствами Соболева первого порядка на действительной оси”, УМН, 74:6(450) (2019), 119–158 ; D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Russian Math. Surveys, 74:6 (2019), 1075–1115
-
Stepanov V.D., Shambilova G.E., “on Iterated and Bilinear Integral Hardy-Type Operators”, Math. Inequal. Appl., 22:4 (2019), 1505–1533