10 citations to https://www.mathnet.ru/rus/rm9378
  1. Fedor Pakhomov, Albert Visser, “Finitely axiomatized theories lack self-comprehension”, Bull. Lond. Math. Soc., 54:6 (2022), 2513–2531  mathnet  crossref
  2. Cheng Y., “Current Research on Godel'S Incompleteness Theorems”, Bull. Symb. Log., 27:2 (2021), PII S107989862000044X, 113–167  crossref  mathscinet  isi
  3. Landini S., Gallegati M., Rosser Jr. J. Barkley, “Consistency and Incompleteness in General Equilibrium Theory”, J. Evol. Econ., 30:1, SI (2020), 205–230  crossref  mathscinet  isi
  4. Cheng Y., “Godel'S Second Incompleteness Theorem: How It Is Derived and What It Delivers”, Bull. Symb. Log., 26:3-4 (2020), PII S1079898620000220, 268–286  crossref  mathscinet  isi
  5. Vladislav Radov, “Chain of Causation: Omission Committed by the Obligor”, Bulletin of Kemerovo State University. Series: Humanities and Social Sciences, 2020:3 (2020), 278  crossref
  6. Yong Cheng, SpringerBriefs in Mathematics, Incompleteness for Higher-Order Arithmetic, 2019, 1  crossref
  7. Salehi S., Seraji P., “On Constructivity and the Rosser Property: a Closer Look At Some Gödelean Proofs”, Ann. Pure Appl. Log., 169:10 (2018), 971–980  crossref  mathscinet  zmath  isi  scopus
  8. Enrico Moriconi, Boston Studies in the Philosophy and History of Science, 334, Truth, Existence and Explanation, 2018, 3  crossref
  9. А. В. Бессонов, “О двух неверных догмах, связанных со второй теоремой Гёделя о неполноте арифметики. I”, Философия науки, 2014, № 4(63), 12–31  mathscinet  elib
  10. Saeed Salehi, “Gödel's Incompleteness Phenomenon—Computationally”, philosophiascientiae, 2014, no. 18-3, 23  crossref