70 citations to https://www.mathnet.ru/rus/rm9237
-
Kiselev O.M., “Asymptotic Behaviour of Measure For Captured Trajectories Into Parametric Autoresonance”, Nonlinear Dyn., 91:3 (2018), 1977–1983
-
Manevitch L.I., Kovaleva A., Smirnov V., Starosvetsky Yu., “Introduction”: Manevitch, LI Kovaleva, A Smirnov, V Starosvetsky, Y, Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures, Foundations of Engineering Mechanics, Springer-Verlag Berlin, 2018, XV–XXII
-
Manevitch L.I., Kovaleva A., Smirnov V., Starosvetsky Yu., “Limiting Phase Trajectories and the Emergence of Autoresonance in Anharmonic Oscillators”: Manevitch, LI Kovaleva, A Smirnov, V Starosvetsky, Y, Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures, Foundations of Engineering Mechanics, Springer-Verlag Berlin, 2018, 195–223
-
Nazarov V.N., Ekomasov E.G., “Autoresonance Control Model of Nonlinear Dynamics of Magnetization in a Three-Layer Antiferromagnetic Structure in the Presence of Attenuation”, Lett. Mater., 8:2 (2018), 158–164
-
Л. А. Калякин, “Резонансный захват в системе двух осцилляторов вблизи равновесия”, ТМФ, 194:3 (2018), 385–402 ; L. A. Kalyakin, “Resonance capture in a system of two oscillators near equilibrium”, Theoret. and Math. Phys., 194:3 (2018), 331–346
-
Л. А. Калякин, “Захват и удержание резонанса вдали от равновесия”, Уфимск. матем. журн., 10:4 (2018), 64–76 ; L. A. Kalyakin, “Capture and holding of resonance far from equilibrium”, Ufa Math. J., 10:4 (2018), 64–76
-
Sultanov O., “Stability and Asymptotic Analysis of the Autoresonant Capture in Oscillating Systems With Combined Excitation”, SIAM J. Appl. Math., 78:6 (2018), 3103–3118
-
Л. А. Калякин, “Асимптотический анализ модели гиромагнитного авторезонанса”, Ж. вычисл. матем. и матем. физ., 57:2 (2017), 285–301 ; L. A. Kalyakin, “Asymptotic analysis of the model of gyromagnetic autoresonance”, Comput. Math. Math. Phys., 57:2 (2017), 281–296
-
Л. А. Калякин, “Адиабатическое приближение для модели циклотронного движения”, Матем. заметки, 101:5 (2017), 733–749 ; L. A. Kalyakin, “Adiabatic approximation for a Model of Cyclotron Motion”, Math. Notes, 101:5 (2017), 850–862
-
Л. А. Калякин, “Уравнение Пенлеве-II как модель резонансного взаимодействия осцилляторов”, Тр. ИММ УрО РАН, 23, № 2, 2017, 104–116 ; L. A. Kalyakin, “Painleve II equation as a model of a resonant interaction of oscillators”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 124–135