57 citations to https://www.mathnet.ru/rus/rm4602
  1. F. Müller-Hoissen, O. Chvartatskyi, K. Toda, “Generalized Volterra lattices: Binary Darboux transformations and self-consistent sources”, Journal of Geometry and Physics, 113 (2017), 226  crossref
  2. R N Garifullin, R I Yamilov, D Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201  crossref
  3. В. Э. Адлер, “Интегрируемые Мёбиус-инвариантные эволюционные цепочки второго порядка”, Функц. анализ и его прил., 50:4 (2016), 13–25  mathnet  crossref  mathscinet  elib; V. E. Adler, “Integrable Möbius-invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 257–267  crossref  isi
  4. R N Garifullin, R I Yamilov, D Levi, “Non-invertible transformations of differential–difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01  crossref
  5. Pál Hegedűs, Janusz Zieliński, “The constants of Lotka–Volterra derivations”, European Journal of Mathematics, 2:2 (2016), 544  crossref
  6. V.E. Adler, “Integrability test for evolutionary lattice equations of higher order”, Journal of Symbolic Computation, 2015  crossref
  7. Kenji Imai, “Homogeneous Lotka–Volterra Equation Possessing a Lie Symmetry: Extension ton-Dimensional Equation and Integrability”, J. Phys. Soc. Jpn, 83:2 (2014), 024005  crossref
  8. A.K. Svinin, “On some classes of discrete polynomials and ordinary difference equations”, J. Phys. A: Math. Theor, 47:15 (2014), 155201  crossref
  9. В. Э. Адлер, “Необходимые условия интегрируемости для эволюционных уравнений на решетке”, ТМФ, 181:2 (2014), 276–295  mathnet  crossref  mathscinet  adsnasa  elib; V. E. Adler, “Necessary integrability conditions for evolutionary lattice equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382  crossref  isi  elib
  10. Janusz Zieliński, Piotr Ossowski, “Rings of constants of generic 4D Lotka-Volterra systems”, Czech Math J, 63:2 (2013), 529  crossref
Предыдущая
1
2
3
4
5
6
Следующая