57 citations to https://www.mathnet.ru/rus/rm4602
-
F. Müller-Hoissen, O. Chvartatskyi, K. Toda, “Generalized Volterra lattices: Binary Darboux transformations and self-consistent sources”, Journal of Geometry and Physics, 113 (2017), 226
-
R N Garifullin, R I Yamilov, D Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201
-
В. Э. Адлер, “Интегрируемые Мёбиус-инвариантные эволюционные цепочки второго порядка”, Функц. анализ и его прил., 50:4 (2016), 13–25 ; V. E. Adler, “Integrable Möbius-invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 257–267
-
R N Garifullin, R I Yamilov, D Levi, “Non-invertible transformations of differential–difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01
-
Pál Hegedűs, Janusz Zieliński, “The constants of Lotka–Volterra derivations”, European Journal of Mathematics, 2:2 (2016), 544
-
V.E. Adler, “Integrability test for evolutionary lattice equations of higher order”, Journal of Symbolic Computation, 2015
-
Kenji Imai, “Homogeneous Lotka–Volterra Equation Possessing a Lie Symmetry: Extension ton-Dimensional Equation and Integrability”, J. Phys. Soc. Jpn, 83:2 (2014), 024005
-
A.K. Svinin, “On some classes of discrete polynomials and ordinary difference equations”, J. Phys. A: Math. Theor, 47:15 (2014), 155201
-
В. Э. Адлер, “Необходимые условия интегрируемости для эволюционных уравнений на решетке”, ТМФ, 181:2 (2014), 276–295 ; V. E. Adler, “Necessary integrability conditions for evolutionary lattice
equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382
-
Janusz Zieliński, Piotr Ossowski, “Rings of constants of generic 4D Lotka-Volterra systems”, Czech Math J, 63:2 (2013), 529