177 citations to https://www.mathnet.ru/rus/rm4237
  1. Patricia H. Baptistelli, Miriam Manoel, Iris O. Zeli, “Normal form theory for reversible equivariant vector fields”, Bull Braz Math Soc, New Series, 47:3 (2016), 935  crossref
  2. S. V. Pavlov, “Classification of phenomenological phase transition models by the methods of equivariant catastrophe theory: Models with L = C nv (n = 3, 4, 6)”, Moscow Univ. Phys., 71:5 (2016), 508  crossref
  3. Makiko Mase, “A mirror duality for families of K3 surfaces associated to bimodular singularities”, manuscripta math., 149:3-4 (2016), 389  crossref
  4. Fathollah Varnik, Thomas Franosch, “Non-monotonic effect of confinement on the glass transition”, J. Phys.: Condens. Matter, 28:13 (2016), 133001  crossref
  5. М. Н. Дубинин, Е. Ю. Петрова, “Высокотемпературный потенциал Хиггса двухдублетной модели в рамках теории катастроф”, ТМФ, 184:2 (2015), 315–337  mathnet  crossref  mathscinet  adsnasa  elib; M. N. Dubinin, E. Yu. Petrova, “High-temperature Higgs potential of the two-doublet model in catastrophe theory”, Theoret. and Math. Phys., 184:2 (2015), 1170–1188  crossref  isi
  6. Maksym Fedorchuk, “Moduli spaces of hyperelliptic curves with A and D singularities”, Math. Z., 276:1-2 (2014), 299  crossref
  7. Guy Bunin, Yariv Kafri, Daniel Podolsky, “Cusp Singularities in Boundary-Driven Diffusive Systems”, J Stat Phys, 2013  crossref
  8. Wolfgang Ebeling, Atsushi Takahashi, “A geometric definition of Gabrielov numbers”, Rev Mat Complut, 2013  crossref
  9. Simon Lang, Rolf Schilling, Thomas Franosch, “Mode-coupling theory for multiple decay channels”, J. Stat. Mech, 2013:12 (2013), P12007  crossref
  10. Bakalov B., Milanov T., “W-Constraints for the Total Descendant Potential of a Simple Singularity”, Compos. Math., 149:5 (2013), 840–888  crossref  isi
Предыдущая
1
3
4
5
6
7
8
9
18
Следующая