177 citations to https://www.mathnet.ru/rus/rm4237
-
Patricia H. Baptistelli, Miriam Manoel, Iris O. Zeli, “Normal form theory for reversible equivariant vector fields”, Bull Braz Math Soc, New Series, 47:3 (2016), 935
-
S. V. Pavlov, “Classification of phenomenological phase transition models by the methods of equivariant catastrophe theory: Models with L = C nv (n = 3, 4, 6)”, Moscow Univ. Phys., 71:5 (2016), 508
-
Makiko Mase, “A mirror duality for families of K3 surfaces associated to bimodular singularities”, manuscripta math., 149:3-4 (2016), 389
-
Fathollah Varnik, Thomas Franosch, “Non-monotonic effect of confinement on the glass transition”, J. Phys.: Condens. Matter, 28:13 (2016), 133001
-
М. Н. Дубинин, Е. Ю. Петрова, “Высокотемпературный потенциал Хиггса двухдублетной модели в рамках теории катастроф”, ТМФ, 184:2 (2015), 315–337 ; M. N. Dubinin, E. Yu. Petrova, “High-temperature Higgs potential of the two-doublet model in catastrophe theory”, Theoret. and Math. Phys., 184:2 (2015), 1170–1188
-
Maksym Fedorchuk, “Moduli spaces of hyperelliptic curves with A and D singularities”, Math. Z., 276:1-2 (2014), 299
-
Guy Bunin, Yariv Kafri, Daniel Podolsky, “Cusp Singularities in Boundary-Driven Diffusive Systems”, J Stat Phys, 2013
-
Wolfgang Ebeling, Atsushi Takahashi, “A geometric definition of Gabrielov numbers”, Rev Mat Complut, 2013
-
Simon Lang, Rolf Schilling, Thomas Franosch, “Mode-coupling theory for multiple decay channels”, J. Stat. Mech, 2013:12 (2013), P12007
-
Bakalov B., Milanov T., “W-Constraints for the Total Descendant Potential of a Simple Singularity”, Compos. Math., 149:5 (2013), 840–888