60 citations to https://www.mathnet.ru/rus/rm4134
-
Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal Multipoint Problem with Multiple Spectrum for an Ordinary (2n)TH Order Differential Equation”, J Math Sci, 246:2 (2020), 152
-
Ya.O. Baranetskij, P.I. Kalenyuk, M. I. Kopach, A.V. Solomko, “The nonlocal problem with multi- point perturbations of the boundary conditions of the Sturm-type for an ordinary differential equation with involution of even order”, Mat. Stud., 54:1 (2020), 64
-
Vladykina V.E. Shkalikov A.A., “Spectral Properties of Ordinary Differential Operators With Involution”, Dokl. Math., 99:1 (2019), 5–10
-
В. Е. Владыкина, А. А. Шкаликов, “Регулярные обыкновенные дифференциальные операторы с инволюцией”, Матем. заметки, 106:5 (2019), 643–659 ; V. E. Vladykina, A. A. Shkalikov, “Regular Ordinary Differential Operators with Involution”, Math. Notes, 106:5 (2019), 674–687
-
Cabri O., “on the Riesz Basis Property of the Root Functions of a Discontinuous Boundary Problem”, Math. Meth. Appl. Sci., 42:18 (2019), 6733–6740
-
Hayati OLĞAR, “Selfadjointness and Positiveness of the Differential Operators Generated by New Type Sturm-Liouville Problems”, Cumhuriyet Science Journal, 40:1 (2019), 24
-
Tynysbek Sh. Kal'menov, Berikbol T. Torebek, “A method for solving ill-posed nonlocal problem for the elliptic equation with data on the whole boundary”, J. Pseudo-Differ. Oper. Appl., 10:1 (2019), 177
-
Ya. Baranetskyi, “A NONLOCAL PROBLEM WITH MULTIPOINT PERTURBATIONS OF PERIODIC CONDITIONS FOR DIffERENTIAL-OPERATOR EQUATIONS OF EVEN ORDER”, BMJ, 6:3-4 (2018), 17
-
А. Г. Баскаков, Д. М. Поляков, “Метод подобных операторов в спектральном анализе оператора Хилла с негладким потенциалом”, Матем. сб., 208:1 (2017), 3–47 ; A. G. Baskakov, D. M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43
-
М. А. Садыбеков, Н. С. Иманбаев, “Регулярный дифференциальный оператор с возмущенным краевым условием”, Матем. заметки, 101:5 (2017), 768–778 ; M. A. Sadybekov, N. S. Imanbaev, “A Regular Differential Operator with Perturbed Boundary Condition”, Math. Notes, 101:5 (2017), 878–887