8 citations to https://www.mathnet.ru/rus/rm3814
  1. Б. Гайич, В. Драгович, Б. Йованович, “О полноте интегралов Манакова”, Фундамент. и прикл. матем., 20:2 (2015), 35–49  mathnet  mathscinet  elib; B. Gajić, V. Dragović, B. Jovanović, “On the completeness of the Manakov integrals”, J. Math. Sci., 223:6 (2017), 675–685  crossref
  2. Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837  crossref  mathscinet  zmath  adsnasa  isi  elib
  3. Brezhnev, YV, “What does integrability of finite-gap or soliton potentials mean?”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 923  crossref  mathscinet  zmath  adsnasa  isi  elib
  4. С. М. Натанзон, “Клейновы поверхности”, УМН, 45:6(276) (1990), 47–90  mathnet  mathscinet  zmath  adsnasa; S. M. Natanzon, “Klein surfaces”, Russian Math. Surveys, 45:6 (1990), 53–108  crossref  isi
  5. И. М. Кричевер, “Методы алгебраической геометрии в теории нелинейных уравнений”, УМН, 32:6(198) (1977), 183–208  mathnet  mathscinet  zmath; I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213  crossref
  6. И. М. Гельфанд, Л. А. Дикий, “Резольвента и гамильтоновы системы”, Функц. анализ и его прил., 11:2 (1977), 11–27  mathnet  mathscinet  zmath; I. M. Gel'fand, L. A. Dikii, “The resolvent and Hamiltonian systems”, Funct. Anal. Appl., 11:2 (1977), 93–105  crossref
  7. Б. А. Дубровин, “Вполне интегрируемые гамильтоновы системы, связанные с матричными операторами, и абелевы многообразия”, Функц. анализ и его прил., 11:4 (1977), 28–41  mathnet  mathscinet  zmath; B. A. Dubrovin, “Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties”, Funct. Anal. Appl., 11:4 (1977), 265–277  crossref
  8. Б. А. Дубровин, В. Б. Матвеев, С. П. Новиков, “Нелинейные уравнения типа Кортевега–де Фриза, конечнозонные линейные операторы и абелевы многообразия”, УМН, 31:1(187) (1976), 55–136  mathnet  mathscinet  zmath; B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146  crossref