61 citations to https://www.mathnet.ru/rus/rm333
-
В. Г. Дубровский, А. В. Топовский, М. Ю. Басалаев, “Новые точные решения с функциональными параметрами уравнения Нижника–Веселова–Новикова с постоянными асимптотическими значениями на бесконечности”, ТМФ, 165:2 (2010), 272–294 ; V. G. Dubrovskii, A. V. Topovsky, M. Yu. Basalaev, “New exact solutions with functional parameters of the Nizhnik–Veselov–Novikov equation with constant asymptotic values at infinity”, Theoret. and Math. Phys., 165:2 (2010), 1470–1489
-
Klibanov M.V., Su J., Pantong N., Shan H., Liu H., “A globally convergent numerical method for an inverse elliptic problem of optical tomography”, Applicable Analysis, 89:6 (2010), 861–891
-
Shan, H, “A globally accelerated numerical method for optical tomography with continuous wave source”, Journal of Inverse and Ill-Posed Problems, 16:8 (2008), 763
-
Michael V Klibanov, Alexandre Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D”, Inverse Probl, 23:1 (2007), 123
-
Lassas, M, “Mapping properties of the nonlinear Fourier transform in dimension two”, Communications in Partial Differential Equations, 32:4 (2007), 591
-
Isozaki, H, “The partial derivative-theory for inverse problems associated with Schrodinger operators on hyperbolic spaces”, Publications of the Research Institute For Mathematical Sciences, 43:1 (2007), 201
-
P.G. Grinevich, Encyclopedia of Mathematical Physics, 2006, 34
-
Dubrovsky V.G., Formusatik I.B., “New rational solutions of Veselov-Novikov equation and new exact rational potentials of two-dimensional stationary Schrodinger equation via partial derivative-dressing method”, Korus 2005, Proceedings, 2005, 136–138
-
V.G. Dubrovsky, I.B. Formusatik, Proceedings. The 9th Russian-Korean International Symposium on Science and Technology, 2005. KORUS 2005., 2005, 136
-
Dubrovsky V.G., Formusatik I.B., “New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schrцdinger equation via $\overline\partial$-dressing method”, Phys. Lett. A, 313:1-2 (2003), 68–76