15 citations to https://www.mathnet.ru/rus/rm2610
-
Sergey Natanzon, Aleksandr Orlov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 337
-
С. М. Натанзон, А. Ю. Орлов, “Числа Гурвица, получающиеся из фейнмановских диаграмм”, ТМФ, 204:3 (2020), 396–429 ; S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194
-
Рафаель И. Непомесчи, “Вронскианная формула для неоднородных $TQ$-уравнений”, ТМФ, 204:3 (2020), 430–435 ; Rafael I. Nepomechie, “Wronskian-type formula for inhomogeneous $TQ$ equations”, Theoret. and Math. Phys., 204:3 (2020), 1195–1200
-
Andrey Mironov, Aleksey Morozov, Sergey Natanzon, “Infinite-dimensional topological field theories from Hurwitz numbers”, J. Knot Theory Ramifications, 23:06 (2014), 1450033
-
A. Mironov, A. Morozov, S. Natanzon, “A Hurwitz theory avatar of open–closed strings”, Eur. Phys. J. C, 73:2 (2013)
-
A. Mironov, A. Morozov, S. Natanzon, “Cardy–Frobenius extension of algebra of cut-and-join operators”, Journal of Geometry and Physics, 2013
-
Mironov A., Morozov A., Natanzon S., “Algebra of differential operators associated with Young diagrams”, J. Geom. Phys., 62:2 (2012), 148–155
-
А. Д. Миронов, А. Ю. Морозов, С. М. Натанзон, “Полный набор операторов разрезания и склейки в теории Гурвица–Концевича”, ТМФ, 166:1 (2011), 3–27 ; A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, Theoret. and Math. Phys., 166:1 (2011), 1–22
-
Sergey A. Loktev, Sergey M. Natanzon, “Klein Topological Field Theories from Group Representations”, SIGMA, 7 (2011), 070, 15 pp.
-
Mironov A., Morozov A., Natanzon S., “Integrability properties of Hurwitz partition functions. II. Multiplication of cut-and-join operators and WDVV equations”, Journal of High Energy Physics, 2011:11 (2011), 097