19 citations to https://www.mathnet.ru/rus/rm212
-
Maltsev A.Y., Novikov S.P., “Topology, quasiperiodic functions, and the transport phenomena”, Topology in Condensed Matter, Springer Series in Solid-State Sciences, 150, 2006, 31–59
-
Д. В. Миллионщиков, “Когомологии разрешимых алгебр Ли и солвмногообразия”, Матем. заметки, 77:1 (2005), 67–79 ; D. V. Millionshchikov, “Cohomology of solvable lie algebras and solvmanifolds”, Math. Notes, 77:1 (2005), 61–71
-
И. А. Дынников, С. П. Новиков, “Топология квазипериодических функций на плоскости”, УМН, 60:1(361) (2005), 3–28 ; I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26
-
Maltsev A.Ya., “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149
-
Maltsev A.Ya., Novikov S.P., “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46
-
Maltsev A.Ya., Novikov S.P., “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 171–210
-
Д. В. Миллионщиков, “Когомологии с локальными коэффициентами солвмногообразий и задачи теории Морса–Новикова”, УМН, 57:4(346) (2002), 183–184 ; D. V. Millionshchikov, “Cohomology of solvmanifolds with local coefficients and problems of the Morse–Novikov theory”, Russian Math. Surveys, 57:4 (2002), 813–814
-
Blümel R., Dabaghian Yu., Jensen R.V., “Explicitly solvable cases of one-dimensional quantum chaos”, Phys. Rev. Lett., 88:4 (2002), 044101, 4 pp.
-
Novikov S.P., “1. Classical and modern topology 2. Topological phenomena in real world physics”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., Special Volume, Part I, 2000, 406–424