83 citations to https://www.mathnet.ru/rus/rm1982
  1. А. Ю. Москвин, “Топология слоения Лиувилля интегрируемого случая Дуллина–Матвеева на двумерной сфере”, Матем. сб., 199:3 (2008), 95–132  mathnet  crossref  mathscinet  zmath  elib; A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448  crossref  isi  elib
  2. Б. М. Даринский, Ю. И. Сапронов, С. Л. Царев, “Бифуркации экстремалей фредгольмовых функционалов”, Функциональный анализ, СМФН, 12, МАИ, М., 2004, 3–140  mathnet  mathscinet  zmath; B. M. Darinskii, Yu. I. Sapronov, S. L. Tsarev, “Bifurcations of extremals of Fredholm functionals”, Journal of Mathematical Sciences, 145:6 (2007), 5311–5453  crossref  elib
  3. Butler, L, “Integrable geodesic flows with wild first integrals: the case of two-step nilmanifolds”, Ergodic Theory and Dynamical Systems, 23 (2003), 771  crossref  mathscinet  zmath  isi  elib
  4. A. V. Bolsinov, A. T. Fomenko, Integrable Geodesic Flows on Two-Dimensional Surfaces, 2000, 287  crossref
  5. Е. А. Кудрявцева, “Реализация гладких функций на поверхностях в виде функций высоты”, Матем. сб., 190:3 (1999), 29–88  mathnet  crossref  mathscinet  zmath; E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Sb. Math., 190:3 (1999), 349–405  crossref  isi
  6. В. В. Козлов, Н. В. Денисова, “Полиномиальные интегралы геодезических потоков на двумерном торе”, Матем. сб., 185:12 (1994), 49–64  mathnet  mathscinet  zmath; V. V. Kozlov, N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 469–481  crossref  isi
  7. В. В. Козлов, Н. В. Денисова, “Симметрии и топология динамических систем с двумя степенями свободы”, Матем. сб., 184:9 (1993), 125–148  mathnet  mathscinet  zmath; V. V. Kozlov, N. V. Denisova, “Symmetries and the topology of dynamical systems with two degrees of freedom”, Russian Acad. Sci. Sb. Math., 80:1 (1995), 105–124  crossref  isi
  8. Е. Н. Селиванова, “Классификация геодезических потоков лиувиллевых метрик на двумерном торе с точностью до топологической эквивалентности”, Матем. сб., 183:4 (1992), 69–86  mathnet  mathscinet  zmath  adsnasa; E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505  crossref  isi
  9. А. Т. Фоменко, “Топологический инвариант, грубо классифицирующий интегрируемые строго невырожденные гамильтонианы на четырехмерных симплектических многообразиях”, Функц. анализ и его прил., 25:4 (1991), 23–35  mathnet  mathscinet  zmath; A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272  crossref  isi
  10. А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779  mathnet  mathscinet  zmath  adsnasa; A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759  crossref  isi
Предыдущая
1
2
3
4
5
6
7
8
9
Следующая