47 citations to https://www.mathnet.ru/rus/rm1687
-
Halpern-Leistner D., “the Derived Category of a Git Quotient”, 28, no. 3, 2015, 871–912
-
M. Ballard, D. Favero, L. Katzarkov, “A category of kernels for equivariant factorizations, II: further implications”, J. Math. Pures Appl. (9), 102:4 (2014), 702–757
-
Daniel Halpern-Leistner, “The derived category of a GIT quotient”, J. Amer. Math. Soc., 28:3 (2014), 871
-
Ch. Böhning, H.-Ch. G. von Bothmer, P. Sosna, “On the derived category of the classical Godeaux surface”, Adv. Math., 243 (2013), 203–231
-
M. Bernardara, M. Bolognesi, “Derived categories and rationality of conic bundles”, Compos. Math., 149:11 (2013), 1789–1817
-
A. Ananyevskiy, A. Auel, S. Garibaldi, K. Zainoulline, “Exceptional collections of line bundles on projective homogeneous varieties”, Adv. Math., 236 (2013), 111–130
-
A. Del Padrone, C. Pedrini, “Derived categories of coherent sheaves and motives of K3 surfaces”, Regulators, Contemp. Math., 571, eds. Gil J., DeJeu R., Lewis J., Naranjo J., Raskind W., Xarles X., Amer. Math. Soc., Providence, RI, 2012, 219–232
-
M. Bernardara, M. Bolognesi, “Categorical Representability and Intermediate Jacobians of Fano Threefolds”, Derived categories in algebraic geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., European Math. Soc., 2012, 1–25
-
F. Ivorra, J. Sebag, “Géométrie algébrique par morceaux, $K$-équivalence et motifs”, Enseign. Math. (2), 58:3-4 (2012), 375–403
-
V. Bouchard, A. Klemm, M. Mariño, S. Pasquetti, “Topological open strings on orbifolds”, Comm. Math. Phys., 296:3 (2010), 589–623