9 citations to https://www.mathnet.ru/rus/rcd905
-
Philip Arathoon, “Singular Reduction of the $2$-Body Problem on the $3$-Sphere and the $4$-Dimensional Spinning Top”, Regul. Chaotic Dyn., 24:4 (2019), 370–391
-
Deng Ya. Diacu F. Zhu Sh., “Variational Property of Periodic Kepler Orbits in Constant Curvature Spaces”, J. Differ. Equ., 267:10 (2019), 5851–5869
-
A. V. Borisov, L. C. Garsía-Naranjo, I. S. Mamaev, J. Montaldi, “Reduction and relative equilibria for the two-body problem on spaces of constant curvature”, Celest. Mech. Dyn. Astr., 130 (2018), 43–36
-
Regina Martínez, Carles Simó, “Relative equilibria of the restricted three-body problem in curved spaces”, Celest Mech Dyn Astr, 128:2-3 (2017), 221
-
Hadrien Montanelli, “Computing Hyperbolic Choreographies”, Regul. Chaotic Dyn., 21:5 (2016), 522–530
-
Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580
-
Alexey V. Borisov, Ivan S. Mamaev, “The restricted two-body problem in constant curvature spaces”, Celestial Mech Dyn Astr, 96:1 (2006), 1
-
Michael Efroimsky, “Long-Term Evolution of Orbits About A Precessing Oblate Planet: 1. The Case of Uniform Precession”, Celestial Mech Dyn Astr, 91:1-2 (2005), 75
-
А. В. Щепетилов, “Задача двух тел на пространствах постоянной кривизны. I. Связь гамильтониана с группой симметрий и редукция классической системы”, ТМФ, 124:2 (2000), 249–264 ; A. V. Shchepetilov, “Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system”, Theoret. and Math. Phys., 124:2 (2000), 1068–1081