8 citations to https://www.mathnet.ru/rus/rcd211
-
Sergei V. Sokolov, Pavel E. Ryabov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 3030, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 2024, 080001
-
Alexey A. Kireenkov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100001
-
Alexey A. Kireenkov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100002
-
Sergei V. Sokolov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100007
-
А. В. Борисов, П. Е. Рябов, С. В. Соколов, “О существовании фокусных особенностей в одной модели волчка Лагранжа с вибрирующей точкой подвеса”, Докл. РАН. Матем., информ., проц. упр., 495 (2020), 26–30 ; A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point”, Dokl. Math., 102:3 (2020), 468–471
-
С. В. Соколов, П. Е. Рябов, “Бифуркационная диаграмма системы двух вихрей в бозе-эйнштейновском конденсате, имеющих интенсивности одинаковых знаков”, Докл. РАН, 480:6 (2018), 652–656 ; S. V. Sokolov, P. E. Ryabov, “Bifurcation diagram of the two vortices in a Bose–Einstein condensate with intensities of the same signs”, Dokl. Math., 97:3 (2018), 286–290
-
С. В. Соколов, “Интегрируемый случай Адлера–ван Мëрбеке. Визуализация бифуркаций торов Лиувилля”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:4 (2017), 532–539
-
A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525