9 citations to https://www.mathnet.ru/rus/qip1
-
G. G. Amosov, “On capacity of quantum channels generated by irreducible projective unitary representations of finite groups”, Quantum Inf. Process., 21 (2022), 81–15
-
G. G. Amosov, A. S. Mokeev, “On non-commutative operator graphs generated by reducible unitary representation of the Heisenberg–Weyl group”, Internat. J. Theoret. Phys., 60 (2021), 457–463
-
А. С. Холево, “Пропускные способности квантовых каналов”, Квантовая электроника, 50:5 (2020), 440–446 ; A. S. Holevo, “Quantum channel capacities”, Quantum Electron., 50:5 (2020), 440–446
-
David Elkouss, David Pérez-García, “Memory effects can make the transmission capability of a communication channel uncomputable”, Nat Commun, 9:1 (2018)
-
Г. Г. Амосов, “Об алгебраических методах исследования квантовых каналов передачи информации”, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 138 (2017), 3–10 ; G. G. Amosov, “Algebraic methods of the study of quantum information transfer channels”, J. Math. Sci. (N. Y.), 241:2 (2019), 109–116
-
Г. Г. Амосов, И. Ю. Ждановский, “О структуре алгебры, порожденной некоммутативным операторным графом, демонстрирующим явление суперактивации для пропускной способности с нулевой ошибкой”, Матем. заметки, 99:6 (2016), 929–932 ; G. G. Amosov, I. Yu. Zhdanovskii, “Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity”, Math. Notes, 99:6 (2016), 924–927
-
Debbie Leung, Nengkun Yu, “Maximum privacy without coherence, zero-error”, Journal of Mathematical Physics, 57:9 (2016)
-
М. Е. Широков, “О квантовой пропускной способности при нулевой ошибке”, УМН, 70:1 (2015), 187–188 ; M. E. Shirokov, “On quantum zero-error capacity”, Russian Math. Surveys, 70:1 (2015), 176–178
-
G. G. Amosov, I. Yu. Zhdanovskiy, “О некоммутативной деформации операторного графа, отвечающего группе Клейна”, Зап. научн. сем. ПОМИ, 436 (2015), 49–75 ; G. G. Amosov, I. Yu. Zhdanovskiy, “On the noncommutative deformation of the operator graph corresponding to the Klein group”, J. Math. Sci. (N. Y.), 215:6 (2016), 659–676