18 citations to https://www.mathnet.ru/rus/ppi39
  1. Qiang 强 Lei 雷, Liuheng 刘桁 Cao 操, Asutosh Kumar, Junde 俊德 Wu 武, “Dilation, discrimination and Uhlmann's theorem of link products of quantum channels”, Chinese Phys. B, 33:3 (2024), 030304  crossref
  2. Р. Н. Гумеров, Р. Л. Хажин, “О делимых квантовых динамических отображениях”, Уфимск. матем. журн., 14:2 (2022), 23–36  mathnet  mathscinet; R. N. Gumerov, R. L. Khazhin, “On divisible quantum dynamical mappings”, Ufa Math. J., 14:2 (2022), 22–34  crossref
  3. Abbas Poshtvan, Vahid Karimipour, “Capacities of the covariant Pauli channel”, Phys. Rev. A, 106:6 (2022)  crossref
  4. G. G. Amosov, “On capacity of quantum channels generated by irreducible projective unitary representations of finite groups”, Quantum Inf. Process., 21 (2022), 81–15  mathnet  crossref  isi  scopus
  5. Shirokov M.E., “On Quantum States With a Finite-Dimensional Approximation Property”, Lobachevskii J. Math., 42:10, SI (2021), 2437–2454  mathnet  crossref  mathscinet  zmath  isi  scopus
  6. Arab A.R., “On Diagonal Quantum Channels”, Rep. Math. Phys., 88:1 (2021), 58–71  crossref  mathscinet  isi
  7. Amosov G., “on Classical Capacity of Weyl Channels”, Quantum Inf. Process., 19:11 (2020), 401  crossref  mathscinet  isi  scopus
  8. Sergeev I., “Generalizations of 2-Dimensional Diagonal Quantum Channels With Constant Frobenius Norm”, Rep. Math. Phys., 83:3 (2019), 349–372  crossref  mathscinet  zmath  isi  scopus
  9. Shirokov M.E., “Uniform Continuity Bounds For Information Characteristics of Quantum Channels Depending on Input Dimension and on Input Energy”, J. Phys. A-Math. Theor., 52:1 (2019), 014001  crossref  mathscinet  zmath  isi  scopus
  10. Junge M., Palazuelos C., Parcet J., Perrin M., “Hypercontractivity in Finite-Dimensional Matrix Algebras”, J. Math. Phys., 56:2 (2015), 023505  crossref  mathscinet  zmath  isi  elib
1
2
Следующая