25 citations to https://www.mathnet.ru/rus/physd1
-
V. Schastnyy, D. Treschev, “On Local Integrability in Billiard Dynamics”, Exp. Math., 28:3 (2019), 362–368
-
Guan Huang, Vadim Kaloshin, Alfonso Sorrentino, “Nearly Circular Domains Which Are Integrable Close to the Boundary Are Ellipses”, Geom. Funct. Anal., 28:2 (2018), 334
-
Vadim Kaloshin, Alfonso Sorrentino, “On the integrability of Birkhoff billiards”, Phil. Trans. R. Soc. A., 376:2131 (2018), 20170419
-
Misha Bialy, Andrey E. Mironov, “A survey on polynomial in momenta integrals for billiard problems”, Phil. Trans. R. Soc. A., 376:2131 (2018), 20170418
-
A. Glutsyuk, E. Shustin, “On polynomially integrable planar outer billiards and curves with symmetry property”, Math. Ann., 372:3-4 (2018), 1481
-
Vadim Kaloshin, Alfonso Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018)
-
Alexander Plakhov, Serge Tabachnikov, Dmitry Treschev, “Billiard transformations of parallel flows: A periscope theorem”, J. Geom. Phys., 115:5 (2017), 157–166
-
Dmitry Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst. Ser. A, 37:10 (2017), 5271–5284
-
В. В. Козлов, “Полиномиальные законы сохранения для газа Лоренца и газа Больцмана–Гиббса”, УМН, 71:2 (2016), 81–120 ; V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290
-
Artur Avila, Jacopo De Simoi, Vadim Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. Math., 184:2 (2016), 527