26 citations to https://www.mathnet.ru/rus/phrb5
  1. Xue-Ting Fang, Zheng-Qi Dai, Di Xiang, Shou-Long Chen, Shao-Jun Li, Xiang Gao, Qian-Ru Zhu, Xing Deng, Lushuai Cao, Zhong-Kun Hu, “Manifold formation and crossings of ultracold lattice spinor atoms in the intermediate interaction regime”, Phys. Rev. A, 106:3 (2022)  crossref
  2. M. A. Gavreev, A. S. Mastiukova, E. O. Kiktenko, A. K. Fedorov, “Learning entanglement breakdown as a phase transition by confusion”, New J. Phys., 24 (2022), 73045–16  mathnet  crossref
  3. Roy J. Garcia, Kaifeng Bu, Arthur Jaffe, “Quantifying scrambling in quantum neural networks”, J. High Energ. Phys., 2022:3 (2022)  crossref
  4. Jie Ren, Zhao Wang, Weixia Chen, Wen-Long You, “Long-range order and quantum criticality in antiferromagnetic chains with long-range staggered interactions”, Phys. Rev. E, 105:3 (2022)  crossref
  5. Zakaria Patel, Ejaaz Merali, Sebastian J Wetzel, “Unsupervised learning of Rydberg atom array phase diagram with Siamese neural networks”, New J. Phys., 24:11 (2022), 113021  crossref
  6. Jintao Yang, Junpeng Cao, Wen-Li Yang, “Dynamical learning of non-Markovian quantum dynamics”, Chinese Phys. B, 31:1 (2022), 010314  crossref
  7. David Yevick, “Variational autoencoder analysis of Ising model statistical distributions and phase transitions”, Eur. Phys. J. B, 95:3 (2022)  crossref
  8. David Huber, Oleksandr V Marchukov, Hans-Werner Hammer, Artem G Volosniev, “Morphology of three-body quantum states from machine learning”, New J. Phys., 23:6 (2021), 065009  crossref
  9. Oleksandr Balabanov, Mats Granath, “Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands”, Mach. Learn.: Sci. Technol., 2:2 (2021), 025008  crossref
  10. Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Gregoire Montavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, Klaus-Robert Muller, “A Unifying Review of Deep and Shallow Anomaly Detection”, Proc. IEEE, 109:5 (2021), 756  crossref
Предыдущая
1
2
3
Следующая