20 citations to https://www.mathnet.ru/rus/nphb8
-
Luke Corcoran, Marius de Leeuw, “All regular $4 \times 4$ solutions of the Yang-Baxter equation”, SciPost Phys. Core, 7:3 (2024)
-
K. Atalikov, A. Zotov, “Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, Письма в ЖЭТФ, 117:8 (2023), 632–633 ; K. Atalikov, A. Zotov, “Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, JETP Letters, 117:8 (2023), 630–634
-
К. Р. Аталиков, А. В. Зотов, “Обобщение старшего ранга 11-вершинной рациональной $R$-матрицы: соотношения IRF-Vertex и ассоциативное уравнение Янга–Бакстера”, ТМФ, 216:2 (2023), 203–225 ; K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103
-
K. Atalikov, A. Zotov, “Higher rank $1+1$ integrable Landau–Lifshitz field theories from associative Yang–Baxter equation”, Письма в ЖЭТФ, 115:12 (2022), 809–810 ; K. Atalikov, A. Zotov, “Higher rank 1 + 1 integrable landauвђ“lifshitz field theories from the associative yangвђ“baxter equation”, JETP Letters, 115:12 (2022), 757–762
-
A. Levin, M. Olshanetsky, A. Zotov, “2D Integrable systems, 4D Chern–Simons theory and affine Higgs bundles”, Eur. Phys. J. C, Part. Fields, 82 (2022), 635–14
-
Zhaowen Yan, Gegenhasi, “On a integrable deformations of Heisenberg supermagnetic model”, JNMP, 23:3 (2021), 335
-
K. Atalikov, A. Zotov, “Field theory generalizations of two-body Calogero–Moser models in the form of Landau–Lifshitz equations”, J. Geom. Phys., 2021, 104161–14
-
T. Krasnov, A. Zotov, “Trigonometric Integrable Tops from Solutions of Associative Yang–Baxter Equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697
-
A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81–33
-
Zhaowen Yan, Bian Gao, Minru Chen, Jifeng Cui, “On the higher order Heisenberg supermagnet model in (2+1)-dimensions”, Chaos, Solitons & Fractals, 118 (2019), 94