22 citations to https://www.mathnet.ru/rus/nphb1
  1. Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)  crossref
  2. Eric Ragoucy, “Bethe vectors and form factors for two-component bose gas”, Phys. Part. Nuclei Lett., 14:2 (2017), 336  crossref
  3. A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927  mathnet  crossref  isi  scopus
  4. Karol K. Kozlowski, Eric Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nuclear Physics B, 906 (2016), 241  crossref
  5. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546  mathnet  crossref  mathscinet  zmath  isi  scopus
  6. O. I. Patu, A. Kluemper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015), 043631  crossref  isi  scopus
  7. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp.  mathnet  crossref  mathscinet  elib
  8. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.  mathnet  crossref  mathscinet  elib
  9. Samuel Belliard, Rodrigo A. Pimenta, “Slavnov and Gaudin–Korepin Formulas for Models without $\mathrm{U}(1)$ Symmetry: the Twisted XXX Chain”, SIGMA, 11 (2015), 099, 12 pp.  mathnet  crossref
  10. Н. А. Славнов, “Одномерный двухкомпонентный бозе-газ и алгебраический анзац Бете”, ТМФ, 183:3 (2015), 409–433  mathnet  crossref  mathscinet  adsnasa  elib; N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821  crossref  isi
Предыдущая
1
2
3
Следующая