17 citations to https://www.mathnet.ru/rus/nd5
-
С. Е. Пустовойтов, “Исследование структуры слоения Лиувилля интегрируемого эллиптического биллиарда с полиномиальным потенциалом”, Чебышевский сб., 25:1 (2024), 62–102
-
В. А. Кибкало, “Первый класс Аппельрота псевдоевклидовой системы Ковалевской”, Чебышевский сб., 24:1 (2023), 69–88
-
В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19 ; V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19
-
С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105 ; S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233
-
И. Ф. Кобцев, “Эллиптический биллиард в поле потенциальных сил: классификация движений, топологический анализ”, Матем. сб., 211:7 (2020), 93–120 ; I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013
-
V. D. Irtegov, T. N. Titorenko, “On invariant sets for the equations of motion of a rigid body in the Hess–Appelrot case”, Известия Иркутского государственного университета. Серия Математика, 33 (2020), 20–34
-
С. Е. Пустовойтов, “Топологический анализ биллиарда в эллиптическом кольце в потенциальном поле”, Фундамент. и прикл. матем., 22:6 (2019), 201–225 ; S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci., 259:5 (2021), 712–729
-
И. Ф. Кобцев, “Геодезический поток двумерного эллипсоида в поле упругой силы: топологическая классификация решений”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 2, 27–33 ; I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow University Mathematics Bulletin, 73:2 (2018), 64–70
-
Nikolaenko S.S., “Topological Classification of the Goryachev Integrable Systems in the Rigid Body Dynamics: Non-Compact Case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060
-
С. С. Николаенко, “Топологическая классификация интегрируемого случая Горячева в динамике твердого тела”, Матем. сб., 207:1 (2016), 123–150 ; S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139