31 citations to https://www.mathnet.ru/rus/mzm900
-
Jacobo Pejsachowicz, Robert Skiba, “Topology and homoclinic trajectories of discrete dynamical systems”, DCDS-S, 6:4 (2012), 1077
-
Poetzsche Ch., “Nonautonomous Bifurcation of Bounded Solutions II: a Shovel-Bifurcation Pattern”, Discret. Contin. Dyn. Syst., 31:3 (2011), 941–973
-
Poetzsche Ch., “Persistence and Imperfection of Nonautonomous Bifurcation Patterns”, J. Differ. Equ., 250:10 (2011), 3874–3906
-
Poetzsche Ch., “Nonautonomous Continuation of Bounded Solutions”, Commun. Pure Appl. Anal, 10:3 (2011), 937–961
-
Poetzsche Ch., “Nonautonomous Bifurcation of Bounded Solutions I: a Lyapunov-Schmidt Approach”, Discrete Contin. Dyn. Syst.-Ser. B, 14:2, SI (2010), 739–776
-
А. Г. Баскаков, “Спектральный анализ дифференциальных операторов
с неограниченными операторными коэффициентами, разностные отношения
и полугруппы разностных отношений”, Изв. РАН. Сер. матем., 73:2 (2009), 3–68 ; A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278
-
В. Е. Слюсарчук, “Условия обратимости нелинейного разностного оператора $(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, в пространстве ограниченных числовых последовательностей”, Матем. сб., 200:2 (2009), 107–128 ; V. E. Slyusarchuk, “Conditions for the invertibility of the nonlinear difference operator
$(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, in the space of bounded number sequences”, Sb. Math., 200:2 (2009), 261–282
-
Baskakov, AG, “On differential and difference Fredholm operators”, Doklady Mathematics, 76:2 (2007), 669
-
Latushkin, Y, “Fredholm differential operators with unbounded coefficients”, Journal of Differential Equations, 208:2 (2005), 388
-
Baskakov, AG, “On invertibility and the Fredholm property of parabolic differential operators”, Doklady Mathematics, 65:2 (2002), 245