16 citations to https://www.mathnet.ru/rus/mzm4454
-
С. Ю. Доброхотов, В. Е. Назайкинский, А. И. Шафаревич, “Эффективные асимптотики решений задачи Коши с локализованными начальными данными для линейных систем дифференциальных и псевдодифференциальных уравнений”, УМН, 76:5(461) (2021), 3–80 ; S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819
-
Anna I. Allilueva, Andrei I. Shafarevich, “Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 80–89
-
A. I. Allilueva, A. I. Shafarevich, “Double Asymptotic Expansion of the Resolving Operator of the Cauchy Problem for the Linearized System of Gas Dynamics”, Dokl. Math., 99:1 (2019), 16
-
Allilueva A.I. Shafarevich A.I., “Localized Asymptotic Solutions of Linearized Equations of Gas Dynamics”, Russ. J. Math. Phys., 25:4 (2018), 415–422
-
O. N. Kirillov, “Dissipation-Induced Instabilities in Magnetized Flows”, J Math Sci, 235:4 (2018), 455
-
Оleg N. Kirillov, Innocent Mutabazi, “Short wavelength local instabilities of a circular Couette flow with radial temperature gradient”, J. Fluid Mech., 818 (2017), 319–343
-
О. Н. Кириллов, “Нарушения устойчивости намагниченных потоков, вызванные диссипацией”, Труды Седьмой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям (Москва, 22–29 августа, 2014). Часть 3, СМФН, 60, РУДН, М., 2016, 82–101
-
A I Allilueva, A I Shafarevich, “Evolution of localized asymptotic solutions for linearized Navier — Stokes and MHD equations”, J. Phys.: Conf. Ser., 722 (2016), 012046
-
A. I. Allilueva, A. I. Shafarevich, “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421
-
O. N. Kirillov, F. Stefani, Y. Fukumoto, “Local instabilities in magnetized rotational flows: a short-wavelength approach”, J. Fluid Mech., 760 (2014), 591