10 citations to https://www.mathnet.ru/rus/mzm427
  1. WENCHANG CHU, EMRAH KILIÇ, “LEFT AND RIGHT EIGENVECTORS OF A VARIANT OF THE SYLVESTER–KAC MATRIX”, Bull. Aust. Math. Soc., 109:2 (2024), 316  crossref
  2. Abdullah Alazemi, Tim Hopkins, Emrah K{\i}lıç, “A four parameter extension to the Clement matrix and its role in numerical software testing”, Journal of Computational and Applied Mathematics, 450 (2024), 115986  crossref
  3. Zhibin Du, Carlos M. da Fonseca, “Sylvester–Kac matrices with quadratic spectra: A comprehensive note”, Ramanujan J, 2024  crossref
  4. Zhibin Du, Carlos M. da Fonseca, “A note on the eigenvalues of a Sylvester–Kac type matrix with off-diagonal biperiodic perturbations”, Journal of Computational and Applied Mathematics, 2024, 116429  crossref
  5. da Fonseca C.M., Kilic E., “A New Type of Sylvester-Kac Matrix and Its Spectrum”, Linear Multilinear Algebra, 69:6 (2021), 1072–1082  crossref  mathscinet  isi  scopus
  6. Da Fonseca C.M., Kilic E., Pereira A., “The Interesting Spectral Interlacing Property For a Certain Tridiagonal Matrix”, Electron. J. Linear Algebra, 36 (2020), 587–598  crossref  mathscinet  isi  scopus
  7. da Fonseca C.M., Kilic E., “An Observation on the Determinant of a Sylvester-Kac Type Matrix”, Analele Stiint. Univ. Ovidius C., 28:1 (2020), 111–115  crossref  mathscinet  isi  scopus
  8. da Fonseca C.M., “A Short Note on the Determinant of a Sylvester-Kac Type Matrix”, Int. J. Nonlinear Sci. Numer. Simul., 21:3-4 (2020), 361–362  crossref  mathscinet  isi  scopus
  9. Chu W., “Spectrum and Eigenvectors For a Class of Tridiagonal Matrices”, Linear Alg. Appl., 582 (2019), 499–516  crossref  mathscinet  isi  scopus
  10. da Fonseca C.M., Mazilu D.A., Mazilu I., Williams H.T., “The Eigenpairs of a Sylvester-Kac Type Matrix Associated with a Simple Model for One-Dimensional Deposition and Evaporation”, Appl. Math. Lett., 26:12 (2013), 1206–1211  crossref  mathscinet  zmath  isi  scopus  scopus