12 citations to https://www.mathnet.ru/rus/mzm3917
  1. Vladimir I. Semenov, Vortex Dynamics - Theoretical, Experimental and Numerical Approaches [Working Title], 2024  crossref
  2. С. Ю. Доброхотов, В. Е. Назайкинский, А. И. Шафаревич, “Эффективные асимптотики решений задачи Коши с локализованными начальными данными для линейных систем дифференциальных и псевдодифференциальных уравнений”, УМН, 76:5(461) (2021), 3–80  mathnet  crossref  mathscinet  zmath; S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819  crossref  isi
  3. Anna I. Allilueva, Andrei I. Shafarevich, “Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 80–89  mathnet  crossref
  4. Allilueva A.I. Shafarevich A.I., “Localized Asymptotic Solutions of Linearized Equations of Gas Dynamics”, Russ. J. Math. Phys., 25:4 (2018), 415–422  crossref  mathscinet  zmath  isi  scopus
  5. A I Allilueva, A I Shafarevich, “Evolution of localized asymptotic solutions for linearized Navier — Stokes and MHD equations”, J. Phys.: Conf. Ser., 722 (2016), 012046  crossref
  6. A. I. Allilueva, A. I. Shafarevich, “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421  crossref
  7. Kucherenko, VV, “Hyperbolic systems with multiplicity greater than or equal to three”, Russian Journal of Mathematical Physics, 16:2 (2009), 265  crossref  mathscinet  zmath  adsnasa  isi
  8. Kulikovskii, AG, “Evolution of perturbations on a weakly inhomogeneous background”, Pmm Journal of Applied Mathematics and Mechanics, 71:5 (2007), 690  crossref  mathscinet  isi
  9. Susan Friedlander, Alexander Lipton-Lifschitz, Handbook of Mathematical Fluid Dynamics, 2, 2003, 289  crossref
  10. Dobrokhotov, SY, “Hugoniot-Maslov chains for solitary vortices of the shallow water equations, I. - Derivation of the chains for the case of variable Coriolis forces and reduction to the Hill equation”, Russian Journal of Mathematical Physics, 6:2 (1999), 137  mathscinet  zmath  isi
1
2
Следующая