11 citations to https://www.mathnet.ru/rus/mzm2821
-
Shen R., Hou G., Chen A., “On the Pseudo-Spectra and the Related Properties of Infinite-Dimensional Hamiltonian Operators”, Linear Multilinear Algebra, 2021
-
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, ed. Filipuk G. Lastra A. Michalik S., Springer, 2018, 177–187
-
Д. В. Нехаев, А. И. Шафаревич, “Квазиклассический предел спектра оператора Шрёдингера с комплексным периодическим потенциалом”, Матем. сб., 208:10 (2017), 126–148 ; D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
-
А. И. Есина, А. И. Шафаревич, “Асимптотика спектра и собственных функций оператора магнитной индукции на компактной двумерной поверхности вращения”, Матем. заметки, 95:3 (2014), 417–432 ; A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
-
Л. А. Калякин, “Фиктивные асимптотические решения”, Уфимск. матем. журн., 6:2 (2014), 45–66 ; L. A. Kalyakin, “Phantom asymptotic solutions”, Ufa Math. J., 6:2 (2014), 44–65
-
Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001
-
Esina A.I. Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
-
А. И. Есина, А. И. Шафаревич, “Условия квантования на римановых поверхностях и квазиклассический спектр оператора Шрёдингера с комплексным потенциалом”, Матем. заметки, 88:2 (2010), 229–248 ; A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Math. Notes, 88:2 (2010), 209–227
-
Roohian H., Shafarevich A.I., “Semiclassical asymptotic behavior of the spectrum of a nonselfadjoint elliptic operator on a two-dimensional surface of revolution”, Russ. J. Math. Phys., 17:3 (2010), 328–333
-
Roohian H., Shafarevich A. I., “Semiclassical asymptotics of the spectrum of a nonselfadjoint operator on the sphere”, Russ. J. Math. Phys., 16:2 (2009), 309–314