8 citations to https://www.mathnet.ru/rus/mzm12557
-
Я. А. Гранильщикова, А. А. Шкаликов, “Спектральные свойства дифференциального оператора с инволюцией”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 4, 67–71 ; Ya. A. Granilshchikova, A. A. Shkalikov, “Spectral properties of a differential operator with involution”, Moscow University Mathematics Bulletin, 77:4 (2022), 204–208
-
Ya. O. Baranetskij, I. I. Demkiv, P. I. Kalenyuk, “Inverse problems of determination of a time-dependent coefficient of parabolic equation with involution and anti-periodicity conditions”, Mat. Met. Fiz. Mekh. Polya, 65:1-2 (2022)
-
N. P. Bondarenko, “Inverse spectral problems for functional-differential operators with involution”, Journal of Differential Equations, 318 (2022), 169
-
D. M. Polyakov, “Spectral asymptotics of two-term even order operators with involution”, J. Math. Sci., 260:6 (2022), 806
-
М. Ш. Бурлуцкая, “Некоторые свойства функционально-дифференциальных операторов с инволюцией $\nu(x)=1-x $ и их приложения”, Изв. вузов. Матем., 2021, № 5, 89–97 ; M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76
-
P. I. Kalenyuk, Ya. O. Baranetskij, L. I. Kolyasa, “A nonlocal problem for a differential operator of even order with involution”, J. Appl. Anal., 26:2 (2020), 297–307
-
Ya.O. Baranetskij, P.I. Kalenyuk, M. I. Kopach, A.V. Solomko, “The nonlocal problem with multi- point perturbations of the boundary conditions of the Sturm-type for an ordinary differential equation with involution of even order”, Mat. Stud., 54:1 (2020), 64
-
D. M. Polyakov, “Formula for Regularized Trace of a Second Order Differential Operator with Involution”, J Math Sci, 251:5 (2020), 748