229 citations to https://www.mathnet.ru/rus/mzm1234
-
Bondarenko N.P., “A Partial Inverse Sturm-Liouville Problem on An Arbitrary Graph”, Math. Meth. Appl. Sci., 44:8 (2021), 6896–6910
-
С. И. Митрохин, “Об асимптотике спектра дифференциального оператора четного порядка с потенциалом дельта-функцией”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 25:4 (2021), 634–662
-
Campbell K., Nguyen M., Weikard R., “On the Spectral Theory For First-Order Systems Without the Unique Continuation Property”, Linear Multilinear Algebra, 69:12 (2021), 2315–2323
-
Pechentsov A.S., “Spectral Distribution of the Weber Operator Perturbed By the Dirac Delta Function”, Differ. Equ., 57:8 (2021), 1003–1009
-
Bondarenko N.P., “Solving An Inverse Problem For the Sturm-Liouville Operator With Singular Potential By Yurko'S Method”, Tamkang J. Math., 52:1, SI (2021), 125–154
-
Amirov R., Huseynov H.M., Durak S., “Self-Adjoint Extensions For a Class of Singular Operators”, Turk. J. Math., 45:1 (2021), 300–304
-
Savchuk A.M., Sadovnichaya V I., “Equiconvergence of Spectral Decompositions For Sturm-Liouville Operators: Triples of Lebesgue Spaces”, Lobachevskii J. Math., 42:5, SI (2021), 1027–1052
-
Del Rio R., Silva L.O., Toloza J.H., “Point Mass Perturbations of Spectral Measures”, Rocky Mt. J. Math., 51:4 (2021), 1407–1432
-
С. И. Митрохин, “Об изучении спектра семейства дифференциальных операторов, потенциалы которых сходятся к дельта-функции Дирака”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, № 1, 20–38
-
N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville
Operator with General Self-Adjoint Boundary Conditions”, Матем. заметки, 109:3 (2021), 358–378 ; N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville
Operator with General Self-Adjoint Boundary Conditions”, Math. Notes, 109:3 (2021), 358–378