7 citations to https://www.mathnet.ru/rus/mzm11205
-
Bezrodnykh S.I., “Analytic Continuation of Lauricella'S Functions F-a((N)), F-B((N)) and F-D((N))”, Integral Transform. Spec. Funct., 31:11 (2020), 921–940
-
Bezrodnykh S.I., “Analytic Continuation of the Horn Hypergeometric Series With An Arbitrary Number of Variables”, Integral Transform. Spec. Funct., 31:10 (2020), 788–803
-
S. Bezrodnykh, A. Bogatyrev, S. Goreinov, O. Grigor'ev, H. Hakula, M. Vuorinen, “On capacity computation for symmetric polygonal condensers”, J. Comput. Appl. Math., 361 (2019), 271–282
-
J. Berge, R. Massey, Q. Baghi, P. Touboul, “Exponential shapelets: basis functions for data analysis of isolated features”, Mon. Not. Roy. Astron. Soc., 486:1 (2019), 544–559
-
S. I. Bezrodnykh, “Analytic continuation of the Lauricella function with arbitrary number of variables”, Integral Transforms Spec. Funct., 29:1 (2018), 21–42
-
С. И. Безродных, “Гипергеометрическая функция Лауричеллы $F_D^{(N)}$, задача Римана–Гильберта и некоторые приложения”, УМН, 73:6(444) (2018), 3–94 ; S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031
-
С. И. Безродных, “Аналитическое продолжение функции Аппеля $F_1$ и интегрирование связанной с ней системы уравнений в логарифмическом случае”, Ж. вычисл. матем. и матем. физ., 57:4 (2017), 555–587 ; S. I. Bezrodnykh, “Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case”, Comput. Math. Math. Phys., 57:4 (2017), 559–589