37 citations to https://www.mathnet.ru/rus/mzm11116
-
Natalia P. Bondarenko, “Local Solvability and Stability of an Inverse Spectral Problem for Higher-Order Differential Operators”, Mathematics, 11:18 (2023), 3818
-
Egor E. Chitorkin, Natalia P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal.Math.Phys., 13:5 (2023)
-
Л. Н. Валеева, Э. А. Назирова, Я. Т. Султанаев, “Об одном методе исследования асимптотики решений
дифференциальных уравнений Штурма–Лиувилля
с быстро осциллирующими коэффициентами”, Матем. заметки, 112:6 (2022), 935–940 ; L. N. Valeeva, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville Differential Equations with Rapidly Oscillating Coefficients”, Math. Notes, 112:6 (2022), 1059–1064
-
Ya. T. Sultanaev, A. R. Sagitova, B. I. Mardanov, “On the Asymptotic Behavior of Solutions of Odd-Order Differential Equations with Oscillating Coefficients”, Diff Equat, 58:5 (2022), 712
-
Natalia P. Bondarenko, “Reconstruction of Higher-Order Differential Operators by Their Spectral Data”, Mathematics, 10:20 (2022), 3882
-
Natalia P. Bondarenko, “SPECTRAL DATA ASYMPTOTICS FOR THE HIGHER-ORDER DIFFERENTIAL OPERATORS WITH DISTRIBUTION COEFFICIENTS”, J Math Sci, 266:5 (2022), 794
-
Н. Ф. Валеев, Э. А. Назирова, Я. Т. Султанаев, “Об одном методе исследования асимптотики решений дифференциальных
уравнений нечетного порядка с осциллирующими коэффициентами”, Матем. заметки, 109:6 (2021), 938–943 ; N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Odd-Order Differential Equations with Oscillating Coefficients”, Math. Notes, 109:6 (2021), 980–985
-
N. P. Bondarenko, “Inverse spectral problems for arbitrary-order differential operators with distribution coefficients”, Mathematics, 9:22 (2021), 2989
-
N. P. Bondarenko, “Solving an inverse problem for the Sturm-Liouville operator with singular potential by Yurko's method”, Tamkang J. Math., 52:1, SI (2021), 125–154
-
A. M. Savchuk, “The Calderon–Zygmund Operator and its Relation to Asymptotic Estimates of Ordinary Differential Operators”, J Math Sci, 259:6 (2021), 908