16 citations to https://www.mathnet.ru/rus/mzm11051
  1. Sergei V. Sokolov, Pavel E. Ryabov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 3030, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 2024, 080001  crossref
  2. Sergei V. Sokolov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100007  crossref
  3. С. В. Соколов, “Памяти Алексея Владимировича Борисова”, Компьютерные исследования и моделирование, 13:1 (2021), 9–14  mathnet  crossref
  4. Ivan A. Bizyaev, Ivan S. Mamaev, “Qualitative Analysis of the Dynamics of a Balanced Circular Foil and a Vortex”, Regul. Chaotic Dyn., 26:6 (2021), 658–674  mathnet  crossref
  5. Sergey M. Ramodanov, Sergey V. Sokolov, “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691  mathnet  crossref
  6. I. S. Mamaev, I. A. Bizyaev, “Dynamics of an unbalanced circular foil and point vortices in an ideal fluid”, Phys. Fluids, 33:8 (2021), 087119  crossref  mathscinet  isi
  7. Ivan S. Mamaev, Ivan A. Bizyaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
  8. П. Е. Рябов, “Бифуркации торов Лиувилля в системе двух вихрей в Бозе–Эйнштейновском конденсате, имеющих положительные интенсивности”, Докл. РАН, 485:6 (2019), 670–675  mathnet  crossref  mathscinet  zmath  elib [P. E. Ryabov, “Bifurcations of Liouville tori in a system of two vortices of positive intensity in a Bose–Einstein condensate”, Dokl. Math., 99:2 (2019), 225–229  crossref  mathscinet  zmath  isi  scopus]
  9. P. E. Ryabov, S. V. Sokolov, “Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate”, Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66  mathnet  crossref  elib
  10. Pavel E. Ryabov, Artemiy A. Shadrin, “Bifurcation Diagram of One Generalized Integrable Model of Vortex Dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431  mathnet  crossref  mathscinet
1
2
Следующая