9 citations to https://www.mathnet.ru/rus/mmo646
  1. Г. В. Белозеров, А. Т. Фоменко, “Траекторные инварианты биллиардов и линейно интегрируемые геодезические потоки”, Матем. сб., 215:5 (2024), 3–46  mathnet  crossref  mathscinet  adsnasa; G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  crossref  isi
  2. С. Е. Пустовойтов, “Исследование структуры слоения Лиувилля интегрируемого эллиптического биллиарда с полиномиальным потенциалом”, Чебышевский сб., 25:1 (2024), 62–102  mathnet  crossref
  3. Д. А. Туниянц, “Топология изоэнергетических поверхностей бильярдных книжек, склеенных из колец”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 3, 26–35  mathnet  crossref  elib; D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, 79:3 (2024), 130–141  crossref
  4. А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176  mathnet  crossref  mathscinet  adsnasa; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  crossref  isi
  5. А. А. Кузнецова, “Моделирование вырожденных особенностей интегрируемых бильярдных систем бильярдными книжками”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2023, № 5, 3–10  mathnet  crossref  elib; A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215  crossref
  6. В. В. Ведюшкина, В. Н. Завьялов, “Реализация геодезических потоков с линейным интегралом биллиардами с проскальзыванием”, Матем. сб., 213:12 (2022), 31–52  mathnet  crossref  mathscinet  adsnasa; V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664  crossref  isi
  7. Г. В. Белозеров, “Топология изоэнергетических $5$-поверхностей трехмерного бильярда внутри трехосного эллипсоида с потенциалом Гука”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 6, 21–31  mathnet  crossref  mathscinet  zmath  elib; G. V. Belozerov, “Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  crossref
  8. В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82  mathnet  crossref
  9. В. В. Ведюшкина, В. А. Кибкало, С. Е. Пустовойтов, “Реализация фокусных особенностей интегрируемых систем биллиардными книжками с потенциалом Гука”, Чебышевский сб., 22:5 (2021), 44–57  mathnet  crossref