13 citations to https://www.mathnet.ru/rus/mmo625
-
Andrey B. Muravnik, Grigorii L. Rossovskii, “Cauchy Problem with Summable Initial-Value Functions for Parabolic Equations with Translated Potentials”, Mathematics, 12:6 (2024), 895
-
I. V. Romanov, “About the Lack of Controllability in Models of “Naive Mechanics”. Three Exceptional Cases”, Прикладная математика и механика, 87:1 (2023), 19
-
Andrey B. Muravnik, “Differential-Difference Elliptic Equations with Nonlocal Potentials in Half-Spaces”, Mathematics, 11:12 (2023), 2698
-
Ю. А. Тихонов, “О локализации спектра оператор-функции, возникающей при изучении колебаний вязкоупругого трубопровода с учетом трения Кельвина–Фойгта”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 2, 23–34 ; Yu. A. Tikhonov, “On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction”, Moscow University Mathematics Bulletin, 77:2 (2022), 73–85
-
E. V. Pankratova, “Spectral Analysis of Integro-Differential Equations Arising in Thermal Physics”, Diff Equat, 58:2 (2022), 280
-
I. V. Romanov, “On the Lack of Controllability in Naive Mechanics Models: Three Exceptional Cases”, Mech. Solids, 57:8 (2022), 2123
-
Ahmed Kherd, Samsul Ariffin Abdul Karim, Saiful Azmi Husain, Studies in Systems, Decision and Control, 444, Intelligent Systems Modeling and Simulation II, 2022, 265
-
A. V. Davydov, “On the Asymptotics of the Nonreal Spectrum of the Integro-Differential Gurtin–Pipkin Equation with Relaxation Kernels Representable in the Form of the Stielties Integral”, Diff Equat, 58:2 (2022), 242
-
Yu. A. Tikhonov, “On the Properties of a Semigroup of Operators Generated by a Volterra Integro-Differential Equation Arising in the Theory of Viscoelasticity”, Diff Equat, 58:5 (2022), 662
-
В. В. Власов, Н. А. Раутиан, “Представление решений вольтерровых интегро-дифференциальных уравнений с дробно-экспоненциальными ядрами”, Материалы Воронежской весенней математической школы
«Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 5, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 194, ВИНИТИ РАН, М., 2021, 92–106