72 citations to https://www.mathnet.ru/rus/mmj164
-
Losev I., “On Categories O For Quantized Symplectic Resolutions”, Compos. Math., 153:12 (2017), 2445–2481
-
Bullimore M., Dimofte T., Gaiotto D., “The Coulomb Branch of 3D N=4 Theories”, Commun. Math. Phys., 354:2 (2017), 671–751
-
Beem Ch., Peelaers W., Rastelli L., “Deformation Quantization and Superconformal Symmetry in Three Dimensions”, Commun. Math. Phys., 354:1 (2017), 345–392
-
Calaque D., Pantev T., Toen B., Vaquie M., Vezzosi G., “Shifted Poisson Structures and Deformation Quantization”, J. Topol., 10:2 (2017), 483–584
-
Webster B., “On generalized category $\mathcal {O}$ for a quiver variety”, Math. Ann., 368:1-2 (2017), 483–536
-
Yu Sh., “Dolbeault Dga and l-Infinity-Algebroid of the Formal Neighborhood”, Adv. Math., 305 (2017), 1131–1162
-
Bellamy G., Dodd Ch., Mcgerty K., Nevins T., “Categorical Cell Decomposition of Quantized Symplectic Algebraic Varieties”, Geom. Topol., 21:5 (2017), 2601–2681
-
Baranovsky V., Ginzburg V., Kaledin D., Pecharich J., “Quantization of Line Bundles on Lagrangian Subvarieties”, Sel. Math.-New Ser., 22:1 (2016), 1–25
-
Braden T., Proudfoot N., Webster B., “Quantizations of Conical Symplectic Resolutions I: Local and Global Structure”, Asterisque, 2016, no. 384, 1–73
-
Braden T. Licata A. Proudfoot N. Webster B., “Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality”, Asterisque, 2016, no. 384, 75–179