11 citations to https://www.mathnet.ru/rus/jpha25
  1. A. S. Holevo, “Information Capacity of State Ensembles and Observables”, Lobachevskii J Math, 45:6 (2024), 2509  crossref
  2. Alexander S. Holevo, Sergey N. Filippov, “Quantum Gaussian maximizers and log-Sobolev inequalities”, Lett. Math. Phys., 113 (2023), 10–23  mathnet  crossref
  3. A. S. Holevo, “An optimization problem concerning noise in quantum measurement channels”, Lobachevskii J. Math., 44:6 (2023), 2033–2043  mathnet  crossref
  4. А. С. Холево, “Логарифмическое неравенство Соболева и квантовые гауссовcкие максимизаторы”, УМН, 77:4 (2022), 205–206  mathnet  crossref  isi  scopus; A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768  mathnet  crossref
  5. А. С. Холево, “Структура квантовой гауссовской наблюдаемой общего вида”, Труды МИАН, 313 (2021), 78–86  mathnet  crossref  isi  scopus; A. S. Holevo, “Structure of a General Quantum Gaussian Observable”, Proc. Steklov Inst. Math., 313 (2021), 70–77  mathnet  crossref
  6. A. A. Kuznetsova, “On the proof of the entanglement-assisted coding theorem for a quantum measurement channel”, Lobachevskii J. Math., 42:10 (2021), 2377–2385  mathnet  crossref  isi  scopus
  7. A. S. Holevo, “Accessible information of a general quantum Gaussian ensemble”, J. Math. Phys., 62:9 (2021), 92201–13  mathnet  crossref  isi  scopus
  8. A. S. Holevo, V. I. Yashin, “Maximum information gain of approximate quantum position measurement”, Quantum Inf. Process., 20 (2021), 97–17  mathnet  crossref  isi  scopus
  9. Alexander Holevo, “On the Classical Capacity of General Quantum Gaussian Measurement”, Entropy, 23:3 (2021), 377–14  mathnet  crossref  isi  scopus
  10. A S Holevo, A A Kuznetsova, “Corrigendum: Information capacity of continuous variable measurement channel (2020 J. Phys. A: Math. Theor. 53 175304)”, J. Phys. A: Math. Theor., 53:45 (2020), 459501  crossref
1
2
Следующая