14 citations to https://www.mathnet.ru/rus/jhep3
  1. Kang Lu, “On Bethe eigenvectors and higher transfer matrices for supersymmetric spin chains”, J. High Energ. Phys., 2023:4 (2023)  crossref
  2. Chuanzhong Li, Bao Shou, “Supersymmetric Quantum Spin Chains and Modified Universal Characters”, J Stat Phys, 190:3 (2023)  crossref
  3. A. Gorsky, M. Vasilyev, A. Zotov, “Dualities in quantum integrable many-body systems and integrable probabilities. Part I”, JHEP, 2022:4 (2022), 159–86  mathnet  crossref  scopus
  4. Kang Lu, Evgeny Mukhin, “On the Supersymmetric XXX Spin Chains Associated to $\mathfrak {gl}_{1|1}$”, Commun. Math. Phys., 386:2 (2021), 711  crossref
  5. M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary”, J. Phys. A, 53:49 (2020), 494002–20  mathnet  crossref  isi  scopus
  6. Chenliang Huang, Kang Lu, Evgeny Mukhin, “Solutions of $ \newcommand{\g}{\mathfrak{g}} \newcommand{\n}{\mathfrak{n}} \newcommand{\gl}{\mathfrak{gl}} \gl_{m|n}$ XXX Bethe ansatz equation and rational difference operators”, J. Phys. A: Math. Theor., 52:37 (2019), 375204  crossref
  7. M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002–45  mathnet  crossref  isi  scopus
  8. A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51 (2018), 315202–26  mathnet  crossref  isi  scopus
  9. Béla Gábor Pusztai, “Self-Duality and Scattering Map for the Hyperbolic van Diejen Systems with Two Coupling Parameters (with an Appendix by S. Ruijsenaars)”, Commun. Math. Phys., 359:1 (2018), 1  crossref
  10. А. В. Забродин, А. В. Зотов, А. Н. Ляшик, Д. С. Руднева, “Асимметричная шестивершинная модель и классическая система частиц Рейсенарса–Шнайдера”, ТМФ, 192:2 (2017), 235–249  mathnet  crossref  isi  scopus; A. V. Zabrodin, A. V. Zotov, A. N. Liashyk, D. S. Rudneva, “Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles”, Theoret. and Math. Phys., 192:2 (2017), 1141–1153  mathnet  crossref
1
2
Следующая