6 citations to https://www.mathnet.ru/rus/ivm9565
-
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin–Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), 266
-
V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the Weak Solvability of High-order Viscoelastic Fluid Dynamics Model”, Lobachevskii J Math, 45:4 (2024), 1524
-
В. Г. Звягин, М. В. Турбин, “Разрешимость начально-краевой задачи для модели движения жидкости Кельвина–Фойгта с переменной плотностью”, Докл. РАН. Матем., информ., проц. упр., 509 (2023), 13–16 ; V. G. Zvyagin, M. V. Turbin, “Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density”, Dokl. Math., 107:1 (2023), 9–11
-
В. Г. Звягин, М. В. Турбин, “Теорема существования слабых решений начально-краевой задачи
для неоднородной несжимаемой модели Кельвина–Фойгта без ограничения
снизу на начальное значение плотности”, Матем. заметки, 114:4 (2023), 628–632 ; V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math. Notes, 114:4 (2023), 630–634
-
Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25:3 (2023)
-
V. Zvyagin, M. Turbin, “Optimal feedback control problem for inhomogeneous Voigt fluid motion model”, J. Fixed Point Theory Appl., 23:1 (2021), 4