14 citations to https://www.mathnet.ru/rus/ivm9492
-
M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of an Initial–Boundary Value Problem
for the Modified Kelvin–Voigt Model with Memory
along Fluid Motion Trajectories”, Diff Equat, 60:2 (2024), 180
-
А. С. Устюжанинова, “Равномерные аттракторы модели Бингама”, Изв. вузов. Матем., 2024, № 8, 65–80
-
M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of initial-boundary value problem for the modified Kelvin–Voigt model with memory along trajectories of fluid motion”, Differencialʹnye uravneniâ, 60:2 (2024), 187
-
Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25:3 (2023)
-
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023)
-
Ustiuzhaninova A., Turbin M., “Feedback Control Problem For Modified Kelvin-Voigt Model”, J. Dyn. Control Syst., 28:3 (2022), 465–480
-
А. В. Звягин, “Слабая разрешимость нелинейно-вязкой модели Павловского”, Изв. вузов. Матем., 2022, № 6, 87–93 ; A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78
-
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Pullback attractors for weak solution to modified Kelvin-Voigt model”, EECT, 11:6 (2022), 2055
-
М. В. Турбин, А. С. Устюжанинова, “Сходимость аттракторов аппроксимации к аттракторам модифицированной модели Кельвина–Фойгта”, Ж. вычисл. матем. и матем. физ., 62:2 (2022), 330–341 ; M. V. Turbin, A. S. Ustiuzhaninova, “Convergence of attractors for an approximation to attractors of a modified Kelvin–Voigt model”, Comput. Math. Math. Phys., 62:2 (2022), 325–335
-
А. С. Устюжанинова, “Pullback-аттракторы модифицированной модели Кельвина–Фойгта”, Изв. вузов. Матем., 2021, № 5, 98–104 ; A. S. Ustiuzhaninova, “Pullback-attractors for the modified Kelvin-Voigt model”, Russian Math. (Iz. VUZ), 65:5 (2021), 77–82