12 citations to https://www.mathnet.ru/rus/ivm7237
-
E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421
-
А. В. Звягин, “Слабая разрешимость нелинейно-вязкой модели Павловского”, Изв. вузов. Матем., 2022, № 6, 87–93 ; A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78
-
Andrey Zvyagin, “Solvability of the Non-Linearly Viscous Polymer Solutions Motion Model”, Polymers, 14:6 (2022), 1264
-
Ashyralyev A., Zvyagin V., Zvyagin A., “About Optimal Feedback Control Problem For Motion Model of Nonlinearly Viscous Fluid”, AIP Conference Proceedings, 2325, eds. Ashyralyev A., Ashyralyyev C., Erdogan A., Lukashov A., Sadybekov M., Amer Inst Physics, 2021, 020003
-
Oksana A. Burmistrova, Sergey V. Meleshko, Vladislav V. Pukhnachev, “Exact Solutions of Boundary Layer Equations in Polymer Solutions”, Symmetry, 13:11 (2021), 2101
-
М. В. Турбин, А. С. Устюжанинова, “Теорема существования слабого решения начально-краевой задачи для системы уравнений, описывающей движение слабых водных растворов полимеров”, Изв. вузов. Матем., 2019, № 8, 62–78 ; M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Russian Math. (Iz. VUZ), 63:8 (2019), 54–69
-
Zvyagin V., Obukhovskii V., Zvyagin A., “on Inclusions With Multivalued Operators and Their Applications To Some Optimization Problems”, J. Fixed Point Theory Appl., 16:1-2 (2014), 27–82
-
Zvyagin A., “Solvability of the Stationary Mathematical Model of a Non-Newtonian Fluid Motion With Objective Derivative”, Fixed Point Theory, 15:2 (2014), 623–634
-
Zvyagin A.V., “Attractors for a Model of Polymer Motion with Objective Derivative in the Rheological Relation”, Dokl. Math., 88:3 (2013), 730–733
-
Zvyagin A.V., “Solvability for Equations of Motion of Weak Aqueous Polymer Solutions with Objective Derivative”, Nonlinear Anal.-Theory Methods Appl., 90 (2013), 70–85