811 citations to https://www.mathnet.ru/rus/intd72
  1. С. Л. Лукьянов, “Квантование скобки Гельфанда–Дикого”, Функц. анализ и его прил., 22:4 (1988), 1–10  mathnet  mathscinet  zmath; S. L. Luk'yanov, “Quantization of the Gel'fand?Dikii brackets”, Funct. Anal. Appl., 22:4 (1988), 255–262  crossref  isi
  2. I. Bakas, “The hamiltonian structure of the spin-4 operator algebra”, Physics Letters B, 213:3 (1988), 313  crossref
  3. George Wilson, “On the quasi-hamiltonian formalism of the KdV equation”, Physics Letters A, 132:8-9 (1988), 445  crossref
  4. M. J. Bergvelt, A. P. E. ten Kroode, “τ functions and zero curvature equations of Toda–AKNS type”, Journal of Mathematical Physics, 29:6 (1988), 1308  crossref
  5. A.C. Kakas, “Spin-4 extended conformal algebras”, Physics Letters B, 215:2 (1988), 343  crossref
  6. C.-A. Laberge, P. Mathieu, “N = 2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg-de Vries equation”, Physics Letters B, 215:4 (1988), 718  crossref
  7. Etsuro Date, “A remark on the connection between affine Lie algebras and soliton equations”, Letters in Mathematical Physics, 16:2 (1988), 125  crossref
  8. I. Yamanaka, R. Sasaki, “Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories”, Progress of Theoretical Physics, 79:5 (1988), 1167  crossref
  9. А. В. Михайлов, А. Б. Шабат, Р. И. Ямилов, “Симметрийный подход к классификации нелинейных уравнений. Полные списки интегрируемых систем”, УМН, 42:4(256) (1987), 3–53  mathnet  mathscinet  zmath  adsnasa; A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63  crossref  isi
  10. П. И. Голод, “Скрытая симметрия уравнения Ландау–Лифшица, иерархия высших уравнений и двойственное уравнение для асимметричного кирального поля”, ТМФ, 70:1 (1987), 18–29  mathnet  mathscinet; P. I. Holod, “Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field”, Theoret. and Math. Phys., 70:1 (1987), 11–19  crossref  isi
Предыдущая
1
77
78
79
80
81
82
Следующая