811 citations to https://www.mathnet.ru/rus/intd72
  1. Shuangqing Chen, Yang Liu, Lixin Wei, Bing Guan, “Exact solutions to fractional Drinfel'd–Sokolov–Wilson equations”, Chinese Journal of Physics, 56:2 (2018), 708  crossref
  2. Michael Gutperle, Yi Li, “Higher spin Chern–Simons theory and the super Boussinesq hierarchy”, Int. J. Mod. Phys. A, 33:14n15 (2018), 1850085  crossref
  3. Sylvain Lacroix, Benoît Vicedo, “Cyclotomic Gaudin Models, Miura Opers and Flag Varieties”, Ann. Henri Poincaré, 19:1 (2018), 71  crossref
  4. Andrea Campoleoni, Stefan Fredenhagen, Joris Raeymaekers, “Quantizing higher-spin gravity in free-field variables”, J. High Energ. Phys., 2018:2 (2018)  crossref
  5. Alberto De Sole, Victor G. Kac, Daniele Valeri, “Classical Affine ${\mathcal W}$-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras”, Commun. Math. Phys., 360:3 (2018), 851  crossref
  6. Orkun Tasbozan, Mehmet Şenol, Ali Kurt, Ozan Özkan, “New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves”, Ocean Engineering, 161 (2018), 62  crossref
  7. Uhi Rinn Suh, “Classical Affine W-Superalgebras via Generalized Drinfeld–Sokolov Reductions and Related Integrable Systems”, Commun. Math. Phys., 358:1 (2018), 199  crossref
  8. И. Т. Хабибуллин, А. Р. Хакимова, “Инвариантные многообразия и пары Лакса для интегрируемых нелинейных цепочек”, ТМФ, 191:3 (2017), 369–388  mathnet  crossref  mathscinet  adsnasa  elib; I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810  crossref  isi
  9. В. С. Герджиков, “Модели типа Кулиша–Склянина: интегрируемость и редукции”, ТМФ, 192:2 (2017), 187–206  mathnet  crossref  mathscinet  adsnasa  elib; V. S. Gerdjikov, “Kulish–Sklyanin-type models: Integrability and reductions”, Theoret. and Math. Phys., 192:2 (2017), 1097–1114  crossref  isi
  10. I T Habibullin, A R Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50:30 (2017), 305206  crossref
Предыдущая
1
14
15
16
17
18
19
20
82
Следующая