50 citations to https://www.mathnet.ru/rus/intd68
-
Aleksandr O. Smirnov, Eugene A. Frolov, Lada L. Dmitrieva, “On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations”, Symmetry, 16:1 (2024), 60
-
А. О. Смирнов, И. В. Анисимов, “О конечнозонных решениях вещественного модифицированного уравнения Кортевега–де Фриза”, ТМФ, 220:1 (2024), 191–209 ; A. O. Smirnov, I. V. Anisimov, “Finite-gap solutions of the real modified Korteweg–de Vries equation”, Theoret. and Math. Phys., 220:1 (2024), 1224–1240
-
A. O. Smirnov, A. A. Caplieva, “Vector form of Kundu–Eckhaus equation and its simplest solutions”, Уфимск. матем. журн., 15:3 (2023), 151–166 ; A. O. Smirnov, A. A. Caplieva, “Vector form of Kundu–Eckhaus equation and its simplest solutions”, Ufa Math. J., 15:3 (2023), 148–163
-
Vladimir Stefanov Gerdjikov, Aleksander Aleksiev Stefanov, “Riemann–Hilbert Problems, Polynomial Lax Pairs, Integrable Equations and Their Soliton Solutions”, Symmetry, 15:10 (2023), 1933
-
Vladimir S. Gerdjikov, Aleksandr O. Smirnov, “On the elliptic null-phase solutions of the Kulish–Sklyanin model”, Chaos, Solitons & Fractals, 166 (2023), 112994
-
Aleksandr O. Smirnov, Eugeni A. Frolov, “On the Propagation Model of Two-Component Nonlinear Optical Waves”, Axioms, 12:10 (2023), 983
-
В. Б. Матвеев, А. О. Смирнов, “Метод Дубровина и цепочка Тода”, Алгебра и анализ, 34:6 (2022), 170–196 ; V. B. Matveev, A. O. Smirnov, “Dubrovin method and Toda lattice”, St. Petersburg Math. J., 34:6 (2023), 1019–1037
-
V. S. Gerdjikov, A. O. Smirnov, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2522, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2022, 030004
-
Xianguo Geng, Jiao Wei, “Three-sheeted Riemann surface and solutions of the Itoh–Narita–Bogoyavlensky lattice hierarchy”, Rev. Math. Phys., 34:04 (2022)
-
Aleksandr O. Smirnov, “Spectral Curves for the Derivative Nonlinear Schrödinger Equations”, Symmetry, 13:7 (2021), 1203