31 citations to https://www.mathnet.ru/rus/im987
-
С. Е. Пустовойтов, “Исследование структуры слоения Лиувилля интегрируемого эллиптического биллиарда с полиномиальным потенциалом”, Чебышевский сб., 25:1 (2024), 62–102
-
А. Ю. Коняев, Е. А. Кудрявцева, В. И. Сидельников, “Геометрия и топология двумерных симплектических многообразий с особенностями общего положения и гамильтоновых систем на них”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 5, 22–33 ; A. Yu. Konyaev, E. A. Kudryavtseva, V. I. Sidel'nikov, “Geometry and topology of two-dimensional symplectic manifolds with generic singularities and Hamiltonian systems on them”, Moscow University Mathematics Bulletin, 79:5 (2024), 230–243
-
А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176 ; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
-
Viktoriya Trifonova, “One more proof of Vassiliev's conjecture”, J. Knot Theory Ramifications, 32:04 (2023)
-
S.E. Pustovoitov, “Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree”, Russ. J. Math. Phys., 30:4 (2023), 643
-
Г. В. Белозеров, “Топологическая классификация биллиардов в трехмерном евклидовом пространстве, ограниченных софокусными квадриками”, Матем. сб., 213:2 (2022), 3–36 ; G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
-
В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19 ; V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 77:1 (2022), 7–19
-
С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105 ; S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233
-
Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31 ; E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28
-
В. А. Трифонова, “Критерии высотности атома”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 3, 12–24 ; V. A. Trifonova, “Criteria for the height of an atom”, Moscow University Mathematics Bulletin, 75:3 (2020), 102–116