9 citations to https://www.mathnet.ru/rus/im4107
-
Е. В. Выборный, С. В. Румянцева, “Квазиклассические асимптотики осциллирующего туннелирования
для квадратичного гамильтониана на алгебре $\operatorname{su}(1,1)$”, Матем. заметки, 112:5 (2022), 665–681 ; E. V. Vybornyi, S. V. Rumyantseva, “Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra $\operatorname{su}(1,1)$”, Math. Notes, 112:5 (2022), 642–655
-
E. M. Novikova, “Coherent Schwartz distributions of the Heisenberg algebra and inverted oscillator”, Journal of Mathematical Physics, 63:12 (2022)
-
Е. М. Новикова, “Новый подход к процедуре квантового усреднения
гамильтониана резонансного гармонического осциллятора
с полиномиальным возмущением на примере
спектральной задачи для цилиндрической ловушки Пеннинга”, Матем. заметки, 109:5 (2021), 747–767 ; E. M. Novikova, “New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap”, Math. Notes, 109:5 (2021), 777–793
-
Novikova E.M., “On Calculating the Coefficients in the Quantum Averaging Procedure For the Hamiltonian of the Resonance Harmonic Oscillator Perturbed By a Differential Operator With Polynomial Coefficients”, Russ. J. Math. Phys., 28:3 (2021), 406–410
-
E. M. Novikova, “Algebra of Symmetries of Three-Frequency Hyperbolic Resonance”, Матем. заметки, 106:6 (2019), 940–956 ; E. M. Novikova, “Algebra of Symmetries of Three-Frequency Hyperbolic Resonance”, Math. Notes, 106:6 (2019), 940–956
-
M. V. Karasev, E. M. Novikova, “Algebra of Symmetries of Three-Frequency Resonance:
Reduction of a Reducible Case to an Irreducible Case”, Матем. заметки, 104:6 (2018), 833–847 ; M. V. Karasev, E. M. Novikova, “Algebra of Symmetries of Three-Frequency Resonance:
Reduction of a Reducible Case to an Irreducible Case”, Math. Notes, 104:6 (2018), 833–847
-
M. V. Karasev, E. M. Novikova, “Inserted perturbations generating asymptotical integrability”, Math Notes, 96:5-6 (2014), 965
-
M. V. Karasev, E. M. Novikova, “Secondary resonances in Penning traps. Non-lie symmetry algebras and quantum states”, Russ. J. Math. Phys., 20:3 (2013), 283
-
Blagodyreva O., Karasev M., Novikova E., “Cubic algebra and averaged Hamiltonian for the resonance 3: (-1) Penning-ioffe trap”, Russ. J. Math. Phys., 19:4 (2012), 440–448