83 citations to https://www.mathnet.ru/rus/im389
  1. N. Broomhead, D. Ploog, “Autoequivalences of toric surfaces”, Proc. Amer. Math. Soc., 142:4 (2014), 1133–1146  crossref  mathscinet  zmath  isi  elib  scopus
  2. M. G. Gulbrandsen, “Donaldson-Thomas invariants for complexes on abelian threefolds”, Math. Z., 273:1-2 (2013), 219–236  crossref  mathscinet  zmath  isi  scopus
  3. Sh. Yanagida, K. Yoshioka, “Semi-homogeneous sheaves, Fourier-Mukai transforms and moduli of stable sheaves on abelian surfaces”, J. Reine Angew. Math., 684 (2013), 31–86  crossref  mathscinet  zmath  isi  elib  scopus
  4. A. C. López Martín, D. Sánchez Gómez, C. Tejero Prieto, “Relative Fourier-Mukai transforms for Weierstraß fibrations, abelian schemes and Fano fibrations”, Math. Proc. Cambridge Philos. Soc., 155:1 (2013), 129–153  crossref  mathscinet  zmath  isi  scopus
  5. U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 28:2 (2013), 179–193  mathscinet  zmath  isi  elib
  6. Yu. Berest, A. Ramadoss, Tang Xiang, “The Picard group of a noncommutative algebraic torus”, J. Noncommut. Geom., 7:2 (2013), 335–356  crossref  mathscinet  zmath  isi  elib  scopus
  7. P. Sosna, “Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 203–213  crossref  mathscinet  zmath  isi  scopus
  8. Martin G. Gulbrandsen, Fields Institute Communications, 67, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, 2013, 535  crossref
  9. K. Hulek, D. Ploog, Fields Institute Communications, 67, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, 2013, 333  crossref
  10. H. Uehara, “A counterexample of the birational Torelli problem via Fourier-Mukai transforms”, J. Algebraic Geom., 21:1 (2012), 77–96  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2
3
4
5
6
7
8
9
Следующая