84 citations to https://www.mathnet.ru/rus/im389
-
A. Auel, M. Bernardara, M. Bolognesi, “Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems”, J. Math. Pures Appl. (9), 102:1 (2014), 249–291
-
N. Broomhead, D. Ploog, “Autoequivalences of toric surfaces”, Proc. Amer. Math. Soc., 142:4 (2014), 1133–1146
-
M. G. Gulbrandsen, “Donaldson-Thomas invariants for complexes on abelian threefolds”, Math. Z., 273:1-2 (2013), 219–236
-
Sh. Yanagida, K. Yoshioka, “Semi-homogeneous sheaves, Fourier-Mukai transforms and moduli of stable sheaves on abelian surfaces”, J. Reine Angew. Math., 684 (2013), 31–86
-
A. C. López Martín, D. Sánchez Gómez, C. Tejero Prieto, “Relative Fourier-Mukai transforms for Weierstraß fibrations, abelian schemes and Fano fibrations”, Math. Proc. Cambridge Philos. Soc., 155:1 (2013), 129–153
-
U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 28:2 (2013), 179–193
-
Yu. Berest, A. Ramadoss, Tang Xiang, “The Picard group of a noncommutative algebraic torus”, J. Noncommut. Geom., 7:2 (2013), 335–356
-
P. Sosna, “Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 203–213
-
Martin G. Gulbrandsen, Fields Institute Communications, 67, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, 2013, 535
-
K. Hulek, D. Ploog, Fields Institute Communications, 67, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, 2013, 333