150 citations to https://www.mathnet.ru/rus/im381
-
King E.J., “Frame Theory for Locally Compact Abelian Groups”, Wavelets and Sparsity XV, Proceedings of SPIE, 8858, eds. VanDeVille D., Goyal V., Papadakis M., SPIE-Int Soc Optical Engineering, 2013, 88581R
-
Khrennikov A.Y., Shelkovich V.M., van der Walt J.H., “Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators”, J. Fourier Anal. Appl., 19:6 (2013), 1323–1358
-
N. M. Chuong, D. V. Duong, “Wavelet bases in the Lebesgue spaces on the field of p-adic numbers”, P-Adic Num Ultrametr Anal Appl, 5:2 (2013), 106
-
A. Khrennikov, V. Shelkovich, J. H. van der Walt, “Measure-free viewpoint on p-adic and adelic wavelets”, P-Adic Num Ultrametr Anal Appl, 5:3 (2013), 204
-
Lukomskii S.F., “Multiresolution analysis on product of zero-dimensional Abelian groups”, J Math Anal Appl, 385:2 (2012), 1162–1178
-
И. Я. Новиков, М. А. Скопина, “Почему в разных структурах базисы Хаара одинаковые?”, Матем. заметки, 91:6 (2012), 950–953 ; I. Ya. Novikov, M. A. Skopina, “Why Are Haar Bases in Various Structures the Same?”, Math. Notes, 91:6 (2012), 895–898
-
Khrennikov A.Y. Kosyak A.V. Shelkovich V.M., “Wavelet Analysis on Adeles and Pseudo-Differential Operators”, J. Fourier Anal. Appl., 18:6 (2012), 1215–1264
-
Behera B., Jahan Q., “Wavelet Packets and Wavelet Frame Packets on Local Fields of Positive Characteristic”, J. Math. Anal. Appl., 395:1 (2012), 1–14
-
Albeverio S., Skopina M., “Haar Bases for l-2(Q(2)(2)) Generated by One Wavelet Function”, Int. J. Wavelets Multiresolut. Inf. Process., 10:5 (2012), 1250042
-
Косяк А.В., Хренников А.Ю., Шелкович В.М., “Базисы всплесков на аделях”, Доклады академии наук, 442:4 (2012), 446–446 ; Kosyak A.V., Khrennikov A.Yu., Shelkovich V.M., “Wavelet Bases on Adele Rings”, Dokl. Math., 85:1 (2012), 75–79