19 citations to https://www.mathnet.ru/rus/im2815
-
Alexander S. Holevo, A. A. Kuznetsova, “The information capacity of entanglement-assisted continuous variable quantum measurement”, J. Phys. A, 53:37 (2020), 375307–17
-
Regula B., “Convex Geometry of Quantum Resource Quantification”, J. Phys. A-Math. Theor., 51:4 (2018), 045303
-
Wilde M.M., “Entanglement Cost and Quantum Channel Simulation”, Phys. Rev. A, 98:4 (2018), 042338
-
Sakai Yu., “Generalized Fano-Type Inequality For Countably Infinite Systems With List-Decoding”, Proceedings of 2018 International Symposium on Information Theory and Its Applications (Isita2018), IEEE, 2018, 727–731
-
М. Е. Широков, “Оценки разрывов информационных характеристик квантовых систем и каналов”, Пробл. передачи информ., 52:3 (2016), 45–72 ; M. E. Shirokov, “Estimates for discontinuity jumps of information characteristics of quantum systems and channels”, Problems of Information Transmission, 52:3 (2016), 239–264
-
Shirokov M.E., “Squashed entanglement in infinite dimensions”, J. Math. Phys., 57:3 (2016), 032203
-
А. С. Холево, М. Е. Широков, “Критерий слабой компактности для семейств обобщенных квантовых ансамблей и его следствия”, Теория вероятн. и ее примен., 60:2 (2015), 402–408 ; A. S. Holevo, M. E. Shirokov, “Criterion of weak compactness for families of generalized quantum ensembles and its applications”, Theory Probab. Appl., 60:2 (2016), 320–325
-
Chang M., Quantum Stochastics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ Press, 2015
-
М. Е. Широков, “Число Шмидта и каналы, частично разрушающие сцепленность, в бесконечномерных квантовых системах”, Матем. заметки, 93:5 (2013), 775–789 ; M. E. Shirokov, “Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems”, Math. Notes, 93:5 (2013), 766–779