30 citations to https://www.mathnet.ru/rus/im2433
  1. В. Л. Попов, “Сизигии в теории инвариантов”, Изв. АН СССР. Сер. матем., 47:3 (1983), 544–622  mathnet  mathscinet  zmath; V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  crossref
  2. Д. И. Панюшев, “Полупростые группы автоморфизмов четырехмерного аффинного пространства”, Изв. АН СССР. Сер. матем., 47:4 (1983), 881–894  mathnet  mathscinet  zmath; D. I. Panyushev, “Semisimple automorphism groups of four-dimensional affine space”, Math. USSR-Izv., 23:1 (1984), 171–183  crossref
  3. Michel Brion, “Surfaces quotients par un groupe unipotent”, Communications in Algebra, 11:10 (1983), 1011  crossref
  4. Michel Brion, “Surfaces quotients par un groupe unipotent”, Communications in Algebra, 11:9 (1983), 1011  crossref
  5. Gerald W. Schwarz, “Representations of simple Lie groups with regular rings of invariants”, Invent math, 49:2 (1978), 167  crossref  mathscinet  zmath
  6. G. S. Bisnovatyi-Kogan, Yu. P. Popov, A. A. Samochin, “The magnetohydrodynamic rotational model of supernova explosion”, Astrophys Space Sci, 41:2 (1976), 287  crossref
  7. В. Л. Попов, “О классификации представлений, исключительных в смысле Игузы”, Функц. анализ и его прил., 9:4 (1975), 83–84  mathnet  mathscinet  zmath; V. L. Popov, “The classification of representations which are exceptional in the sense of Igusa”, Funct. Anal. Appl., 9:4 (1975), 348–350  crossref
  8. В. Л. Попов, “О стабильности действия алгебраической группы на алгебраическом многообразии”, Изв. АН СССР. Сер. матем., 36:2 (1972), 371–385  mathnet  mathscinet  zmath; V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379  crossref
  9. Э. Б. Винберг, В. Л. Попов, “Об одном классе квазиоднородных аффинных многообразий”, Изв. АН СССР. Сер. матем., 36:4 (1972), 749–764  mathnet  mathscinet  zmath; È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758  crossref
  10. А. Г. Элашвили, “Канонический вид и стационарные подалгебры точек общего положения для простых линейных групп Ли”, Функц. анализ и его прил., 6:1 (1972), 51–62  mathnet  mathscinet  zmath; A. G. Élashvili, “Canonical form and stationary subalgebras of points of general position for simple linear Lie groups”, Funct. Anal. Appl., 6:1 (1972), 44–53  crossref
Предыдущая
1
2
3